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Summary 
The default guideline values (DGVs) and associated information in this technical brief should be used 

in accordance with the detailed guidance provided in the Australian and New Zealand Guidelines for 

Fresh and Marine Water Quality website (www.waterquality.gov.au/anz-guidelines). 

Ametryn (N2-ethyl-N4-isopropyl-6-methylthio-1,3,5-triazine-2,4-diamine; CAS No. 834-12-8) is a 

selective, systemic triazine herbicide or, more specifically, a methylthiotriazine herbicide. Other 

methylthiotriazine herbicides include prometryn, terbutryn and simetryn. Ametryn is a 

photosynthesis-inhibiting herbicide that is used in Australia to control most annual grasses and 

broad-leaved weeds in a variety of crops, such as pineapples and sugarcane, and areas including 

roadsides, drains, railway lines and footpaths (APVMA 2020). Ametryn is not registered for use in 

New Zealand (ACVM 2021). 

Previously, no Australian and New Zealand DGVs existed for ametryn in freshwater or marine 

environments. Since the publishing of the ANZECC/ARMCANZ (2000) guidelines, more data on 

ametryn toxicity to freshwater species have become available, including data for phototrophic 

species (e.g. plants, algae), and have been used to derive the DGVs for Australia and New Zealand. 

The available data indicate that ametryn is more toxic to phototrophic species than to heterotrophic 

species. The lowest reported toxicity values to freshwater species are 1.09 µg/L (acute, freshwater 

macrophyte, 4-d EC10) and 0.3 µg/L (chronic, freshwater microalga, 4-d EC50). 

The ametryn DGVs for freshwater were derived based on chronic NOEL data and chronic EC50 data 

(converted to negligible effect concentrations) for eight phototrophic species from three phyla and 

four classes, with a good fit of the species sensitivity distribution (SSD) to the toxicity data.  

The DGVs are expressed in terms of the dissolved active ingredient (ametryn) and relate to ametryn 

only—not its breakdown products. Only toxicity data for ametryn with a purity greater than 80% 

were used to derive the DGVs (Warne et al. 2018). The DGVs for 99%, 95%, 90% and 80% species 

protection are 0.017 µg/L, 0.10 µg/L, 0.24 µg/L and 0.67 µg/L, respectively. The 95% protection DGV 

of 0.10 µg/L is recommended for adoption in the assessment of slightly-to-moderately disturbed 

ecosystems. 
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1 Introduction 
Ametryn (CAS No. 843-12-8, chemical formula C9H17N5S, molecular mass 227.33 g/mol) is a selective, 

systemic herbicide that is a white powder at 25°C (Figure 1). Ametryn is the active ingredient of a 

variety of commercial herbicide formulations. The physico-chemical properties of ametryn that may 

affect its environmental fate and toxicity are presented in Table 1.  

 

Figure 1 Structure of ametryn 

Table 1 Summary, selected physico-chemical properties of ametryn 

Physico-chemical property Value 

Molecular weight 227.3 amu a 

Aqueous solubility 200 mg/L at pH 7.1 and 22oC a 

Logarithm of the octanol-water partition coefficient (log Kow) 2.63 at pH 7 and 20oC b 

Logarithm of the organic carbon water partition coefficient 
(log Koc) 

1.98–2.97 a 

2.5 b 

Logarithm of the bioconcentration factor (log BCF) 1.52 b 

Half-life in water (t1/2) 
>1 week c 

Stable in aqueous solutions under natural sunlight d 

Half-life in soil (t1/2) 11–280 days, median 62 days a 

a BCPC (2012).  

b Pesticide Properties Database (University of Hertfordshire 2013).  

c USEPA (1987). 

d USEPA (2013).  

Ametryn belongs to the methylthiotriazine group within the triazine family of herbicides, which also 

includes prometryn, terbutryn and simetryn. Ametryn is extensively used in Australian agriculture, 

forestry and grazing applications to control most annual grasses and broad-leaved weeds in a variety 

of crops, such as pineapples and sugarcane (APVMA 2020). Ametryn is also approved for use on 

commercial and industrial land, right-of-way areas, roadsides, railway lines, footpaths and drains 

(APVMA 2020). Ametryn is not approved for use in New Zealand (ACVM 2021).  

Information on the degradation of ametryn in water is limited. Decomposition of ametryn due to 

hydrolysis is not expected due to the lack of appropriate functional groups; loss due to volatilisation 

is also not expected to occur (PubChem 2021). Microbial degradation will contribute to the 

decomposition of ametryn in water, but binding to suspended solids and sediment is expected to be 

the major pathway for such decomposition (PubChem 2021). Ametryn has a low soil adsorption 

capacity (Koc) and a moderate aqueous solubility (Table 1), suggesting it has a high potential to leach 

to groundwater and be transported in surface water; however, leaching studies have indicated that 
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ametryn does not leach significantly (BCPC 2012). Supporting this finding, a study of surface water 

and groundwater samples in six US states found ametryn in only 0.2% of surface water samples, 

compared to approximately 4% of groundwater samples (USEPA 1987). A more recent assessment of 

ametryn by USEPA (2013) concluded that because ametryn is highly persistent and relatively mobile, 

it may leach into aquatic systems after elevated rainfall, floods or from spray drift after application to 

control weeds.  

Australian data from 2011 to 2015 show that ametryn was detected in approximately 15.5% of 

surface water samples in catchments monitored as part of the Great Barrier Reef Catchment Loads 

Monitoring Program (based on data in Turner et al. 2012, 2013; Wallace et al. 2014, 2015, 2016; 

Garzon-Garcia et al. 2015). 

2 Aquatic toxicology 
2.1 Mechanisms of toxicity 

Ametryn is absorbed through the roots and leaves of plants. It is then translocated acropetally (i.e. 

movement upwards from base of plant to apex) in the xylem and accumulates in the apical 

meristems (BCPC 2012). Ametryn exerts its toxicity in aquatic plants by inhibiting electron transport 

in the photosystem II (PSII) complex (University of Hertfordshire 2013), a key process in 

photosynthesis that occurs in the thylakoid membranes of chloroplasts. Photosynthesis inhibiting 

herbicides bind to the plastoquinone B protein binding site on the D1 protein in PSII. This prevents 

the transport of electrons to synthesise adenosine triphosphate (used for cellular metabolism) and 

nicotinamide adenine dinucleotide phosphate (used in converting CO2 to glucose), therefore 

preventing CO2 fixation (Wilson et al. 2000). 

In addition to its main mode of action, exposure to PSII inhibiting herbicides can increase the 

formation of reactive oxygen species (ROS), including the synthesis of singlet oxygen (1O2), 

superoxide (O2
-) and hydrogen peroxide (H2O2) (Halliwell 1991). ROS are highly reactive forms of 

oxygen that readily react with, and bind to, biomolecules including deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA). ROS are created during normal cellular functioning, particularly in biochemical 

processes that involve the generation of energy (e.g. photosynthesis in chloroplasts and the Krebs 

cycle in the mitochondria of cells), and are involved in a number of cellular processes (Chen et al. 

2012). In phototrophs, ROS are formed when the absorbed light energy exceeds the ability to convert 

CO2 to organic molecules (Chen et al. 2012). Prolonged exposure to elevated concentrations of ROS 

in plants, as a result of biotic (e.g. disease) and/or abiotic (e.g. PSII inhibiting herbicides) stressors, 

can cause irreversible cell damage and ultimately lead to cell death (apoptosis). 

2.2 Relative toxicity 

There were toxicity data for 15 freshwater species that passed the screening and quality assessment 

processes. These consisted of nine phototrophic species and six heterotrophic species. The 

phototrophic species consisted of one diatom, six green algae and two macrophytes. The 

heterotrophs consisted of four fish and two crustaceans. 
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The available evidence indicates that phototrophic species are more sensitive to ametryn than 

heterotrophic species (Appendix B: Modality assessment for ametryn). However, four heterotrophic 

species had sensitivities within the range of the phototrophic species. 

Toxicity values for the three types of phototrophic species varied markedly, although it is not 

possible to discern whether there are differences in the sensitivities of the three groups to ametryn. 

• A 72-h EC50 of 26 µg/L was reported for the diatom Stauroneis amphoroides (USEPA 2015). 

• Green algae toxicity values ranged from a 96-h EC50 of 0.3 µg/L for Chlorella pyrenoidosa (Ma et 
el. 2001, 2002) to a 10-d EC50 of 10 000 µg/L for Chlorococcum sp. (USEPA 2015). 

• Macrophyte toxicity values ranged from an acute 96-h EC10 of 1.09 µg/L for Lemna 
aequinoctialis (Seery and Pradella 2014) to a chronic 7-d NOEL and EC50 of 2 µg/L and 13 µg/L, 
respectively, for L. gibba (USEPA 2015). 

Toxicity values for heterotrophic species ranged from 240 µg/L to 73 000 µg/L. Fish toxicity values 

ranged from a 96-h NOEL (mortality) of 700 µg/L for Oncorhynchus mykiss to a 96-h LC50 (mortality) 

of 16 000 µg/L for Pimephales promelas (USEPA 2015). Crustacean toxicity values ranged from a 21-d 

NOEL (immobilisation) of 240 µg/L (USEPA 2015) to a 24-h EC50 (immobilisation) of 73 000 µg/L 

(Marchini et al. 1988) for Daphnia magna. 

3 Factors affecting toxicity 
There are no studies on factors affecting the toxicity of ametryn. However, such information is 

available for other PSII herbicides, including atrazine, diuron and terbuthylazine, which are discussed 

below. This information provides insights on factors that may affect the toxicity of ametryn. 

The potential effect of particulate matter (e.g. natural black carbon, combusted black carbon, and 

suspended solids) and dissolved organic matter on toxicity is not clear. Knauer et al. (2007) found 

that the addition of natural black carbon and combusted black carbon could reduce or completely 

remove the impact of diuron on photosynthesis. In contrast, a comprehensive review by Knauer et al. 

(2017) reported that suspended solids did not significantly affect the toxicity and bioavailability of 

atrazine and terbuthylazine (PSII herbicides) to aquatic organisms in 13 out of 16 datasets. The 

review included a series of studies on the effect of suspended solids on the toxicity of atrazine to 

Australian freshwater heterotrophs (i.e. cladocerans Ceriodaphnia cf. dubia and Daphnia carinata, 

shrimp Paratya australiensis, midge Chironomus tepperi, and fish Melanotaenia fluviatilis (Phyu et al. 

2004; 2005a, b; 2006; 2008, 2013)). 

One of the modes of action of ametryn in phototrophs is to increase the formation of ROS (see 

Section 2.1). Given that the formation of ROS is dependent on light intensity, increased turbidity (e.g. 

from increased suspended solids) may decrease ametryn toxicity. Elevated light intensity was found 

to interact additively or synergistically with diuron to damage the PSII of the seagrass Halophila 

ovalis, while lower light generally resulted in impacts that were sub-additive (Wilkinson et al. 2015). 

King et al. (2022a) found that the chronic toxicity of diuron to the marine diatom Phaeodactylum 

tricornutum under low light conditions varied depending on the stressor intensity and endpoint 

measured; they reported a mild inhibition of photosynthesis but a major inhibition of growth (i.e. cell 

density). King et al. (2022b) found that diuron and reduced light resulted in additive, antagonistic or 
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synergistic interactions, depending on the stressor intensity, exposure period and the measured 

biological response.  

Wilkinson et al. (2017) also found that water temperatures greater or less than the thermal optima 

for H. ovalis tended to exert sub-additive (antagonistic) effects when combined with diuron. 

However, these sub-additive effects were still greater than the effect of each stressor alone.  

This information indicates that the combined effects of PSII herbicides and other stressors may be 

species-specific and difficult to predict. 

4 Default guideline value derivation 
The DGVs were derived in accordance with the method described in Warne et al. (2018) and using 

Burrlioz 2.0 software. 

4.1 Toxicity data used in derivation 

To obtain data for ametryn toxicity to freshwater organisms, a search of the scientific literature was 

conducted. In addition, the following databases were searched: USEPA (2015) ECOTOX 

Knowledgebase; Australasian Ecotoxicology Database (Warne et al. 1998); and ANZECC/ARMCANZ 

(2000) toxicant database (Sunderam et al. 2000). There are now sufficient ametryn toxicity data 

available to derive DGVs for freshwater (Appendix A: Toxicity data that passed the screening and 

quality assessment and were used to derive the default guideline values). To derive higher reliability 

DGVs in the future, additional chronic toxicity tests of ametryn with freshwater phototrophic species 

should be conducted. 

There were freshwater toxicity data for 15 species from five phyla that passed the screening and 

quality assessment processes. The represented phyla were Arthropoda, Bacillariophyta, Chlorophyta, 

Chordata and Tracheophyta. Chronic toxicity data were available for 10 of the 15 species, comprising 

eight phototrophic and two heterotrophic species; acute toxicity data were available for seven 

species, comprising one phototrophic and six heterotrophic species. 

Based on the mode of action of ametryn (Section 2) and the results of the modality assessment in 

Appendix B: Modality assessment for ametryn (i.e. toxicity data distribution is likely bimodal), it was 

concluded that phototrophs were more sensitive than heterotrophs to ametryn. Therefore, as 

recommended by Warne et al. (2018), only phototroph toxicity data were used to calculate the 

DGVs.  

Normally, species classified only to genus (e.g. Chlorella sp.) are not used in the DGV derivation 

process, as species specificity is required. The use of such data in DGV derivations is usually avoided 

as the ambiguity at the genus level could result in more than one toxicity value being assigned to a 

single species. However, visual identification and classification of species within a genus, particularly 

for microalgae, can be difficult for some genera due to their lack of characteristic morphological 

features (Kessler and Huss 1992). Nonetheless, when there are no other data for species belonging to 

the same genus (i.e. there is no chance of duplicating a species) and/or when there are limited data 

available, these data can be included in the DGV derivation. In deriving the DGVs for ametryn in 



Toxicant default guideline values for aquatic ecosystem protection: Ametryn in freshwater 

Australian and New Zealand Guidelines for Fresh and Marine Water Quality 5 

UNOFFICIAL 

UNOFFICIAL 

freshwater, Chlorococcum sp., Neochloris sp. and Platymonas sp. were included as no other toxicity 

data for these genera were used. 

There were insufficient chronic negligible effect values (e.g. EC10, NOEC/NOEL) for phototrophs to 

derive DGVs for ametryn in freshwater. Therefore, these data were combined with estimated chronic 

negligible effect data (chronic EC50 toxicity data converted to negligible effect estimates by dividing 

by 5) for phototrophic species. Toxicity data based on both measured and nominal concentrations 

were used because ametryn is water soluble, has low partition coefficients (Koc and Kow) (Table 1), 

and has a low vapour pressure (2.74 x 10-6 mm Hg at 25°C (PubChem 2021)); therefore, nominal 

concentrations were not expected to differ markedly to measured concentrations. This resulted in a 

final dataset of toxicity values for eight phototrophic species belonging to three phyla 

(Bacillariophyta, Chlorophyta and Tracheophyta) (Table 2). Although the phototroph-only dataset did 

not meet the standard requirement for data from at least four taxonomic groups, it was still 

acceptable to use because the full dataset of chronic toxicity values for phototrophs and 

heterotrophs (10 species from five phyla) met both the number of species and taxonomic group 

requirements (i.e. at least five species from at least four taxonomic groups (Warne et al. 2018)). 

A summary of the toxicity data (one value per species) used to calculate the DGVs for ametryn in 

freshwater is provided in Table 2. Further details of the water quality parameters for each species 

used to calculate the DGVs are in Appendix A: Toxicity data that passed the screening and quality 

assessment and were used to derive the default guideline values. Details of the data quality 

assessment and the data that passed the quality assessment are provided as supporting information. 

Table 2 Summary of single chronic toxicity values, all species used to derive default guideline 
values for ametryn in freshwater 

Taxonomic 
group 

Species 
Life 
stage 

Duration 
(hours) 

Toxicity measure 
(endpoint) a 

Reported toxicity 
value (µg/L) 

Final toxicity 
value (µg/L) 

Green alga 

Chlorella 
pyrenoidosa b, c 

– 96 EC50 (abundance) 0.3 0.06 d 

Chlorococcum 
sp. 

– 240 
EC50 (biomass yield, 
growth rate, AUC e) 

10 000 2 000 d 

Neochloris sp. – 72 
EC50 (biomass yield, 
growth rate, AUC e) 

36 7.2 d 

Platymonas sp. – 72 
EC50 (biomass yield, 
growth rate, AUC e) 

24 4.8 d 

Scenedesmus 
quadricauda 

– 96 EC50 (abundance) 150 30 d 

Selenastrum 
capricornutum f 

– 168 
NOEL (biomass yield, 
growth rate) 

1.14 1.14 

Macrophyte Lemna gibba – 168 
NOEL (frond number, 
dry weight, frond area) 

2 2 

Diatom 
Stauroneis 
amphoroides 

– 72 
EC50 (biomass yield, 
growth rate, AUC e) 

26 5.2 d 

– : Not stated / no data. 

a The measure of toxicity being estimated/determined. EC50: 50% effect concentration. NOEL: no observed effect level. 

b Species also known as Chlorella vulgaris.  

c Species that originated from, or are distributed in, Australia and/or New Zealand. 

d Chronic EC50 converted to chronic negligible effect estimate by dividing by 5 (Warne et al. 2018). 
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e AUC: area under the growth curve.  

f Species also known as Raphidocelis subcapitata and Pseudokirchneriella subcapitata.  

To identify species that were regionally relevant to Australia and New Zealand ecosystems, a search 

of Algaebase (Guiry and Guiry 2017), Atlas of Living Australia (ALA 2017), Catalogue of Life (Roskov et 

al. 2017) and the Integrated Taxonomic Information System (ITIS 2017). The dataset used in the DGVs 

derivation for ametryn in freshwater (Table 2) includes toxicity data for one freshwater species that 

either originated from, or is distributed in, Australia and/or New Zealand. 

4.2 Species sensitivity distribution 

The cumulative frequency (species sensitivity) distribution (SSD) of the eight chronic freshwater 

species values reported in Table 2 is shown in Figure 2. The SSD was plotted using the Burrlioz 2.0 

software. The model provided a good fit to the data (Figure 2). 

 

Figure 2 Species sensitivity distribution, ametryn in freshwater 

4.3 Default guideline values 

It is important that the DGVs (Table 3) and associated information in this technical brief are used in 

accordance with the detailed guidance provided in the Australian and New Zealand Guidelines for 

Fresh and Marine Water Quality website (ANZG 2018). 

The ametryn DGVs for 99%, 95%, 90% and 80% species protection are shown in Table 3. The ametryn 

DGVs are expressed in terms of the concentration of the active ingredient. The DGVs relate to 

dissolved ametryn only, and not its breakdown products. ANZG (2018) provides guidance on what to 

do if the DGVs are under-protective due to formulation-related factors. The 95% species protection 

DGV is recommended for application to slightly-to-moderately disturbed ecosystems. 
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Measured log BCF values for ametryn are low (Error! Reference source not found.) and below the 

threshold at which secondary poisoning must be considered (i.e. threshold log BCF = 4 (Warne et al. 

2018)). Therefore, the ametryn DGVs do not need to account for secondary poisoning. 

Table 3 Default guideline values, ametryn in freshwater, high reliability 

Level of species protection (%) DGV for ametryn in freshwater (µg/L) a 

99 0.017 

95 0.10 

90 0.24 

80 0.67 

a Default guideline values were derived using the Burrlioz 2.0 software and are reported to two significant figures. 

4.4 Reliability classification 

The ametryn freshwater DGVs have a high reliability classification (Warne et al. 2018) based on the 

outcomes for the following three criteria: 

• sample size—8 (good)  

• type of toxicity data—chronic  

• SSD model fit—good (Burr type III). 
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Glossary 
Term Definition 

acute toxicity 
A lethal or adverse sub-lethal effect that occurs as the result of a short exposure period 
to a chemical relative to the organism’s life span. 

bimodal 

When the distribution of the sensitivity of species to a toxicant has two modes. This 
typically occurs with chemicals with specific modes of action. For example, herbicides 
are designed to affect plants at low concentrations but most animals are only affected 
at high concentrations.  

CAS no. 
Chemical Abstracts Service number. Each chemical has a unique identifying number 
allocated to it by the American Chemical Society. 

chronic toxicity 
A lethal or sublethal adverse effect that occurs after exposure to a chemical for a period 
of time that is a substantial portion of the organism’s life span or an adverse effect on a 
sensitive early life stage. 

default guideline value (DGV) 
A guideline value recommended for generic application in the absence of a more 
specific guideline value (e.g. site-specific), in the Australian and New Zealand Water 
Quality Guidelines. 

EC50 (median effective 
concentration) 

The concentration of a substance in water or sediment that is estimated to produce a 
50% change in the response being measured or a certain effect in 50% of the test 
organisms relative to the control response, under specified conditions. 

ECx 
The concentration of a substance in water or sediment that is estimated to produce an 
x% change in the response being measured or a certain effect in x% of the test 
organisms, under specified conditions. 

endpoint 
The specific response of an organism that is measured in a toxicity test (e.g. mortality, 
growth, a particular biomarker). 

LC50 (median lethal 
concentration) 

The concentration of a substance in water or sediment that is estimated to be lethal to 
50% of a group of test organisms, relative to the control response, under specified 
conditions. 

mode of action The means by which a chemical exerts its toxic effects.  

NOEC (no observed effect 
concentration) 

The highest concentration of a material used in a toxicity test that has no statistically 
significant adverse effect on the exposed population of test organisms as compared with 
the controls. 

NOEL (no observed effect 
level) 

Synonymous with NOEC. 

phototrophs 
Organisms that photosynthesise as their main means of obtaining energy e.g. plants and 
algae. 

PSII Photosystem II of the photosynthetic biochemical pathway. 

ROS Reactive oxygen species. 

species 
A group of organisms that resemble each other to a greater degree than members of 
other groups and that form a reproductively isolated group that will not produce viable 
offspring if bred with members of another group. 

SSD (species sensitivity 
distribution) 

A method that plots the cumulative frequency of species’ sensitivities to a toxicant and 
fits a statistical distribution to the data. From the distribution, the concentration that 
should theoretically protect a selected percentage of species can be determined. 

toxicity 
The inherent potential or capacity of a material to cause adverse effects in a living 
organism. 

toxicity test 
The means by which the toxicity of a chemical or other test material is determined. A 
toxicity test is used to measure the degree of response produced by exposure to a 
specific level of stimulus (or concentration of chemical) for a specified test period. 
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Appendix A: Toxicity data that passed the screening and 
quality assessment and were used to derive the default 
guideline values 
Table A 1 Summary, chronic toxicity data that passed the screening and quality assessment processes, ametryn in freshwater 

Taxonomic 
group 

Species Life 
stage 

Exposure 
duration 
(hours) 

Toxicity measure 
(test endpoint) a 

Test medium Temp. 
(°C) 

pH Concentration 
(µg/L) 

Reference 

Diatom Stauroneis amphoroides – 72 EC50 (biomass yield, 
growth rate, AUC c) 

ASTM Type I water 24 ± 2 7.5 ± 0.1 26 USEPA (2015) 

– 5.2 b Value used in SSD 

Green alga Chlorococcum sp. – 240 EC50 (biomass yield, 
growth rate, AUC c) 

ASTM Type I water 24 ± 2 7.5 ± 0.1 10 000 USEPA (2015) 

– 2 000 b Value used in SSD 

Neochloris sp. – 72 EC50 (biomass yield, 
growth rate, AUC c) 

ASTM Type I water 24 ± 2 7.5 ± 0.1 36 USEPA (2015) 

– 7.2 b Value used in SSD 

Platymonas sp. – 72 EC50 (biomass yield, 
growth rate, AUC c) 

ASTM Type I water 24 ± 2 7.5 ± 0.1 24 USEPA (2015) 

– 4.8 b Value used in SSD 

Selenastrum 
capricornutum d 

– 168 NOEL (biomass yield, 
growth rate) 

ASTM Type I water 24 ± 2 7.5 ± 0.1 1.14 USEPA (2015) 

– 1.14 Value used in SSD 

Scenedesmus quadricauda – 96 EC50 (abundance) HB-4 medium – – 150 Ma et al. (2003) 

– 30 b Value used in SSD 
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Taxonomic 
group 

Species Life 
stage 

Exposure 
duration 
(hours) 

Toxicity measure 
(test endpoint) a 

Test medium Temp. 
(°C) 

pH Concentration 
(µg/L) 

Reference 

Chlorella pyrenoidosa e, f – 96 EC50 (abundance) Liquid HB-4 medium 25 – 0.3 Ma et al. (2001) 

Chlorella pyrenoidosa e, f – 96 EC50 (abundance) Liquid HB-4 medium 25 – 0.3 Ma et al. (2002) 

– 0.3 Geometric mean 

– 0.06 b Value used in SSD 

Macrophyte Lemna gibba – 168 NOEL (frond number, 
dry weight, frond 
area) 

M-Hoagland’s or 20X-
AAP media. ASTM 
Type I water 

25 ± 2 4.8–5.2 (M-
Hoagland’s) 
and 7.5 ± 0.1 
(20X-AAP) 

2 USEPA (2015) 

– 2 Value used in SSD 

– : No data / not stated. 

a The measure of toxicity being estimated/determined. EC50: 50% effect concentration. NOEL: no observed effect level. 

b EC50 values converted to negligible effect estimates by dividing by 5 (Warne et al. 2018). 

c AUC = area under the growth curve.  

d Species also known as Raphidocelis subcapitata and Pseudokirchneriella subcapitata.  

e Species also known as Chlorella vulgaris.  

f Species that originated from, or is distributed in, Australia and/or New Zealand. 
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Appendix B: Modality assessment for 
ametryn 
A modality assessment was undertaken for ametryn according to the four questions stipulated in 

Warne et al. (2018). These questions and their answers are listed below. 

Is there a specific mode of action that could result in taxa-specific sensitivity? 
Ametryn exerts its toxicity in aquatic plants (including aquatic macrophytes and algae) by inhibiting 

electron transport in the photosystem II (PSII) complex (University of Hertfordshire 2013), a key 

process in photosynthesis that occurs in the thylakoid membranes of chloroplasts.  

In addition to its main mode of action, exposure to PSII inhibiting herbicides can increase the 

formation of reactive oxygen species (ROS) (Halliwell 1991). Prolonged exposure to elevated 

concentrations of ROS in plants, as a result of biotic (e.g. disease) and/or abiotic (e.g. PSII inhibiting 

herbicides) stressors, can cause irreversible cell damage and ultimately lead to cell death (apoptosis). 

These modes of action suggest that ametryn is more toxic to phototrophs than to heterotrophs. 

Does the dataset suggest bimodality? 
Modality was assessed using a dataset that combined all ametryn freshwater and marine data that 

passed the screening and quality assessment schemes (n = 27). This was done to increase the sample 

size of the dataset being assessed. All data that were not chronic negligible effect values (e.g. EC10, 

NOEC) were converted to this type of data using the methods recommended by Warne et al. (2018). 

Box and whisker plots for the freshwater data and marine data indicated that there was no 

difference in the sensitivities of the two groups (Figure B 1). Therefore, the pooled dataset was 

retained for the modality assessment. Calculation of the bimodality coefficient (BC) on log-

transformed data yielded a value of 0.38, which—being below the indicative BC threshold for 

bimodality of 0.55—suggested the dataset does not exhibit bimodality. However, a frequency 

histogram indicated that the dataset may not be unimodal (Figure B 2). 

 

Note: ‘x’ denotes the mean; circles represent the individual toxicity values.  

Figure B 1 Box plot, comparison of freshwater and marine species sensitivities to ametryn  

Taxa 
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Figure B 2 Histogram, freshwater and marine species dataset 

Do data show taxa-specific sensitivity (i.e. through distinct groupings of different taxa types)?  
The relative sensitivity of different taxa groups to ametryn was compared using box and whisker 

plots (Figure B 3) and a species sensitivity distribution (SSD) (Figure B 4). These analyses indicated 

that there is a marked, but not complete, separation in the sensitivities of phototrophic and 

heterotrophic species to ametryn. Also, the inclusion of toxicity data for heterotrophs resulted in an 

offset of datapoints at the top of the SSD (Figure B 4). This pattern is typically seen among chemicals 

with a specific mode of action and is a strong visual indication of bimodality.  

Overall, the specificity of the mode of action of ametryn (to a protein only in phototrophs) and the 

separation in sensitivity indicate that the sensitivity of ametryn is bimodal, with phototrophic species 

being the more sensitive group. 

 

Note: ‘x’ denotes the mean; circles represent the individual toxicity values. 

Figure B 3 Box plot, comparison of phototroph and heterotroph sensitivity to ametryn 
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Figure B 4 Species sensitivity distribution, comparison of phototroph and heterotroph sensitivity to 
ametryn 

Is it likely that indications of bimodality or multimodality or distinct clustering of taxa groups are 
not due to artefacts of data selection, small sample size, test procedures, or other reasons 
unrelated to a specific mode of action? 
No. Given that there are ecotoxicity data for 19 phototrophs and 8 heterotrophs, the distributions 

are relatively representative.  

Overall, the specificity of the mode of action of ametryn and the separation in sensitivity indicate 

that the toxicity of ametryn is bimodal, with phototrophs being the more sensitive group.  

  

Ametryn (µg/L)
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