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Summary 
The default guideline values (DGVs) and associated information in this technical brief should be used 

in accordance with the detailed guidance provided in the Australian and New Zealand Guidelines for 

Fresh and Marine Water Quality website (www.waterquality.gov.au/anz-guidelines).  

Copper is widely distributed in the earth’s crust and is an essential trace element for micro-

organisms, plants and animals. It is commonly used in roofing, plumbing, electrical wiring and 

electronics. Copper is also used as a biocide in antifouling paints, wood preservatives, fungicides and 

algaecides. The major anthropogenic sources of copper for freshwater environments include 

municipal wastewater discharges, mining and mineral processing, metal and electrical 

manufacturing, fungicide use, and stormwater. 

Since the last revision of the freshwater copper DGVs (i.e. ANZECC/ARMCANZ 2000), new data have 

become available, including high quality local species data. Furthermore, there is increased 

understanding of the effects of dissolved organic carbon (DOC), hardness and other toxicity 

modifying factors on copper toxicity. Increases in DOC reduce the aquatic toxicity of copper, as 

copper binds to DOC, decreasing the available free copper concentrations. Previously used hardness 

corrections for copper were not protective of sensitive invertebrate and algal species (Markich et al. 

2005). Consequently, this update of the copper DGVs replaces water hardness corrections with DOC 

corrections. 

Very high reliability DGVs for dissolved copper in freshwater were derived from chronic toxicity data 

for 59 species (comprising 15 fish, 18 molluscs, 11 crustaceans, two insects, one rotifer, one 

cnidarian, three macrophytes, six green microalgae, one fungus and one bacterium), with a good 

(visual) fit of the species sensitivity distribution (SSD) to the toxicity data. Appendix A: Toxicity data 

that passed the screening and quality assessment and were used to derive the default guideline 

values lists all chronic toxicity data used in the derivation. The DGVs (at DOC of 0.5 mg/L) for 99%, 

95%, 90% and 80% species protection are 0.20 µg/L, 0.47 µg/L, 0.73 µg/L and 1.3 µg/L, respectively. 

The DGVs can be adjusted to the DOC concentrations of ambient waters (up to 30 mg/L DOC). The 

95% DGV for dissolved copper in freshwater is recommended for adoption in the assessment of 

slightly-to-moderately disturbed ecosystems.  

The Australian and New Zealand guidelines for fresh and marine water quality (ANZG 2018) provides 

guidance for evaluating monitoring data against DGVs and recommends a decision scheme that 

includes consideration of the bioavailable fraction. Such guidance for metals, presented as a decision 

tree, is provided in Appendix B: Actions to assess the bioavailable fraction of a metal.  
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1 Introduction 
Copper is a naturally occurring metallic element. It is an abundant trace element, present in the 

Earth’s crust at approximately 50 ppm (Landner & Reuther 2004). It is found as the native metal but 

predominantly in the form of: sulfide minerals chalcopyrite (CuFeS2), chalcocite (Cu2S) and bornite 

(Cu5FeS4); copper carbonates azurite (Cu3(CO3)2(OH)2) and malachite (Cu2CO3(OH)2); and the Cu+ 

oxide mineral cuprite (Cu2O). The major copper mines are in the Americas (particularly Chile), 

Australia and Europe (particularly Russia, Poland and Sweden) (Landner & Reuther 2004, Schoeters 

et al. 2008).  

Copper has been used for centuries as jewellery, vessels, currency and in tools (Landner & Reuther 

2004). Current uses include architectural structures, roofing, plumbing and electronics (European 

Copper Institute 2008). Copper is also used as a biocide in antifouling paints, wood preservatives, 

fungicides and algaecides (European Copper Institute 2008). The major anthropogenic sources of 

copper in aquatic environments are municipal wastewater discharges, mining and mineral 

processing, metal and electrical manufacturing, anti-fouling paints, fungicide use, and stormwater 

(which can include copper from sources such as architectural surfaces (Pennington & Webster‐Brown 

2008) and vehicle brake linings (McKenzie et al. 2009)). 

Copper is a D-block element and a transition metal—as such, it has more than one oxidation state 

(Stumm & Morgan 1996, European Copper Institute 2008). The principal states are cuprous (Cu+) and 

cupric (Cu2+). These are found as salts such as Cu2+ sulfate pentahydrate (CuSO4 5H2O) and Cu+ oxide 

(Cu2O). Cu+ is unstable in aqueous media and will oxidise to Cu2+, which typically binds to inorganic 

and organic ligands, such as iron oxides or humic acids. In water, sediment and soil, the binding 

affinities of Cu2+ with inorganic and organic matter depend on pH, the oxidation-reduction potential 

in the local environment, and the presence of competing metal ions and inorganic anions. 

Background concentrations of copper in freshwater can be extremely low; in some New Zealand 

lakes and rivers, concentrations measure 0.04–0.5 μg/L (Ahlers et al. 1991, Reid et al. 1999, Sander et 

al. 2013)—low by global standards (Reid et al. 1999). However, concentrations in urban streams 

range from <1 μg/L to 15 μg/L and higher during storm events (Gadd et al. 2014, Allinson et al. 2017, 

Shi et al. 2019). In freshwater streams receiving untreated discharges from historical and 

contemporary mines, concentrations can exceed 100 μg/L (Smith & Williamson 1986, Mudd & 

Patterson 2010, Mackay & Taylor 2013) and, in some cases, can be found in the hundreds of 

milligrams per litre range (e.g. NTEPA 2014).  

This technical brief provides updated default guideline values (DGVs) for dissolved copper in 

freshwater, which supersede the ANZECC/ARMCANZ (2000) DGVs. The current derivation has added 

new data published since 2000, including chronic data for Australasian species. The hardness 

corrections applied to the ANZECC/ARMCANZ (2000) DGVs have been replaced with dissolved 

organic carbon (DOC) corrections. The rationale for this change is detailed in Section 3 and also in 

Gadd (2021). 
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2 Aquatic toxicology 
2.1 Mechanisms of toxicity 

Copper is an essential nutrient for plants, animals and humans. It is required in at least 12 major 

proteins, and deficiency of copper can lead to impaired metabolic functions and reduced growth 

(IPCS 1998). This is observed in copper deficient soils, with adverse effects on livestock occurring in 

the absence of dietary copper supplementation. However, at higher concentrations (e.g. ≥microgram 

per litre concentrations) copper is acutely and chronically toxic, particularly to aquatic organisms. In 

addition to acute effects such as mortality, chronic exposure to excess copper can alter brain 

function, enzyme activity, blood chemistry, and metabolism, which lead to adverse effects on 

growth, reproduction and survival. 

Copper toxicity occurs because copper can: block essential functional groups of biomolecules; 

displace essential metal ions in biomolecules; and form free oxyradicals causing oxidative stress (IPCS 

1998).  

For fish and invertebrates, acute and chronic copper toxicity are primarily caused by disturbance of 

sodium ion regulation, with the gill and gut tissues the primary targets for metal uptake, binding and 

toxicity. In acute exposures, this results in loss of sodium (and chloride), which creates an osmotic 

imbalance and leads to cardiovascular collapse and death (Van Sprang et al. 2008). In chronic 

exposures, organisms can (to an extent) recover their ionoregulatory balance; however, there is a 

metabolic cost of this, which may reduce growth and reproduction (Meyer et al. 2007). In fish, 

copper also affects the olfactory system, which can alter a fish’s ability to avoid water with high 

copper concentrations.  

For unicellular algae, the mechanism of copper toxicity is different to fish and is thought to be 

through changes in membrane potential and permeability or through competition with essential 

metals for binding and uptake (Stauber & Davies 2000, Van Sprang et al. 2008). Within algal cells, 

copper can inhibit enzymes and change intracellular pH (Stauber & Davies 2000). In algae and plants, 

copper is an inhibitor of photosynthesis and growth; thus, it has been widely used in herbicides.  

As there are different mechanisms of copper toxicity between fish, invertebrates, plants and algae, 

copper toxicity datasets may exhibit bimodality or multimodality (Section 4.2). 

2.2 Acute and chronic toxicity 

Acute toxicity values (LC50) for freshwater species range from 0.5 µg/L for Daphnia magna mortality 

(Brix et al. 2001) to 84 600 µg/L for the fish Notemigonus crysoleucas (USEPA 2007). The cladoceran 

taxonomic group is one of the most sensitive to copper, with species mean acute values of 2.7 μg/L, 

5.9 μg/L and 6.0 μg/L reported for D. pulicaria, Ceriodaphnia dubia and D. magna, respectively, 

based on based on copper data normalised to pH of 7.5, calcium of 14 mg/L, magnesium of 12 mg/L 

(hardness of 84 mg/L as CaCO3) and DOC of 0.5 mg/L using the biotic ligand model (BLM) (USEPA 

2007) (see Section 3 for details of factors affecting copper toxicity).  
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Chronic toxicity (e.g. as expressed by NOECs for long-term tests) is typically less than 10-fold higher 

than acute toxicity. Acute-to-chronic ratios calculated by USEPA (2007) were mainly in the range of 

2:1 to 6:1, though higher ratios were also reported (e.g. 171:1 for freshwater snail Campeloma 

decisum). The chronic toxicity data compiled for the USEPA (2007) water quality criterion (WQC) for 

copper ranged from 2.8 µg/L (EC20, survival) for the cladoceran Daphnia pulex to 60 µg/L (maximum 

acceptable toxicant concentration, biomass) for the northern pike Esox lucius. Most of the data used 

in USEPA (2007) date from the 1970s and 1980s, with only two studies conducted more recently (i.e. 

1990–2001). Several higher values, including a NOEC of 138 µg/L for Chlorella vulgaris (based on 

growth in a 3 d test), were included in the data compiled for the European Union risk assessment 

(Van Sprang et al. 2008), which included species outside of North America and studies undertaken in 

the 1990s and 2000s. The most recent data compilation (Brix et al. 2017) included lower NOEC values 

of 1.3 µg/L for C. dubia (reproduction), 1.9 µg/L for Pimephales promelas (early life stage test on 

growth), <2.0 µg/L for the freshwater mussel Lampsilis siliquoidea (survival, 28 d test on juveniles), 

and an EC20 of 2.7 µg/L for the fish Acipenser transmontanus (biomass, 28 d test on larvae). 

The available toxicity data indicate that there is marked overlap in the sensitivity to copper between 

different taxonomic groups. Molluscs appear to be consistently sensitive, with negligible effect values 

typically below 10 µg/L. Cladocerans are the most sensitive organisms in some studies but not 

others. The European Union compilation of NOEC values (Van Sprang et al. 2008) suggested that 

algae and plants are less sensitive than invertebrates and fish; however, the majority of the algae 

data is from tests with DOC of ≥5 mg/L, whereas other tests on invertebrates and fish mostly used 

lower DOC. 

For fish, the genus Oncorhynchus has been reported as the most sensitive fish genus based on acute 

toxicity (USEPA 2007). In 58 d chronic tests, the embryo life stage of O mykiss appeared to be more 

sensitive than the juvenile life stage, with EC10 values for growth of 10 µg/L and >22 µg/L, 

respectively (Besser et al. 2001). However, larvae of A. transmontanus were considerably more 

sensitive in chronic tests (EC10 of 1.2 µg/L in 53 d growth test (USGS 2014)), as were larvae of 

Etheostoma fonticola (IC10 of 7–9 µg/L, 30 d survival and biomass tests (Besser et al. 2001)). 

Studies with freshwater mussels (Order: Unionidae) have shown that the larval (glochidia) and 

juvenile life stages are extremely sensitive to copper, and can be more sensitive than other species 

commonly used in toxicity testing, including cladocerans. For three North American species, 28 d 

tests provided IC10 values from <3.1 µg/L to 4.9 µg/L for survival and 5.5 µg/L to 6.3 µg/L for growth 

(Wang et al. 2007). Tests with Australian and New Zealand species suggest they are more sensitive 

than North American species: Markich (2017) reported NECs of 0.74–1.3 µg/L for six freshwater 

mussel species based on cell closure in 72 h exposure tests, while Clearwater et al. (2014) reported 

48 h EC20s for mortality of 1.2–2.7 µg/L for the glochidial life stage of the native New Zealand 

freshwater mussel Echyridella menziesii.  

Algae and plants are known to be sensitive to copper, although there is a considerable variation in 

the toxicity values, which range from 1 µg/L to 8 000 μg/L (USEPA 2007). Algal isolates from Papua 

New Guinea are the most sensitive to copper in 3 d growth tests, with EC10 values of 0.45 μg/L and 

0.9 μg/L for Monoraphidium arcuatum and Chlorella sp., respectively (Adams et al. 2018). Other 

studies have found Chlorella sp. to be slightly less sensitive than this, with IC50s for cell division 

ranging from 3.4 μg/L to 46 μg/L (Langdon et al. 2009). For the Norwegian isolates of the green 
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microalga Raphidocelis subcapitata, NOEC values for growth rate have been reported between 

0.3 μg/L (Levy et al. 2009) and >100 μg/L (De Schamphelaere et al. 2003, Franklin et al. 2004, 

Heijerick et al. 2005) depending on the testing laboratory and the chemistry of the test water. 

Although there have been fewer studies examining toxicity to vascular plants, the available studies 

suggest some vascular plants are as sensitive as unicellular algae and invertebrates. For example, an 

EC10 value of 15 μg/L was reported for Lemna minor for a 7 d growth test (Naumann et al. 2007), 

though other researchers testing this species report values >100 μg/L (Sobrero et al. 2004). 

3 Factors affecting toxicity 
3.1 Copper speciation 

The toxicity of copper depends on its form—whether it is freely dissolved, an inorganic complex, an 

organic complex, or associated with particulates. Freely dissolved copper is the most toxic form as it 

is the most bioavailable, whereas most inorganic and organic complexes are less bioavailable and, 

hence, less toxic. Particulate-associated copper has low bioavailability, particularly to bacteria and 

phytoplankton. Based on this, previous water quality guidelines (i.e. USEPA 1996, ANZECC/ARMCANZ 

2000) have recommended that, rather than comparing total copper to numeric criteria, the dissolved 

form of copper should be used (operationally defined as the <0.45 µm filtered fraction). 

Dissolved copper includes ‘free’ copper, which exists predominantly as the cupric ion (Cu2+) weakly 

associated with water molecules (Cu.nH2O+2), but this species is usually a small percentage of 

dissolved copper at pH >6.5 (Stumm & Morgan 1996). At more alkaline pH, typically over 90% of 

dissolved copper is bound to inorganic or organic ligands such as humic acids, fulvic acids, 

hydroxides, and carbonates, which are less toxic than free Cu2+ (Van Sprang et al. 2008). In natural 

water, the organic ligands are the most important ligands for copper binding (Stumm & Morgan 

1996); complexation with dissolved organic matter (DOM; typically referred to as DOC as it contains 

~50% carbon by mass (Duarte et al. 2016)) increases as the pH and concentration of DOC are 

increased, and as the concentrations of competing ions are decreased (Stumm & Morgan 1996). As 

the speciation of dissolved copper is dependent on aspects of water chemistry (e.g. pH, humic acids, 

carbonates), the toxicity of copper varies between waterbodies with different water chemistry (see 

Section 3.2). 

3.2 Toxicity modifying factors 

Factors affecting copper toxicity typically involve changes to copper speciation or competition with 

copper at biological uptake sites, as discussed below. 

Competition between copper and other cations (e.g. calcium and magnesium—together represented 

by water hardness) for biological uptake sites can reduce the uptake of copper by some organisms. 

The effect of competition is demonstrated by the reduction in copper toxicity as water hardness 

increases, as shown for many species (e.g. rainbow and bull trout (Hansen et al. 2002), or see reviews 

in Hunt (1987), Campbell (1995), Allen & Hansen (1996) and Paquin et al. (2002)). However, water 

hardness does not influence copper toxicity to all species, as demonstrated for the cladocerans 

C. dubia (Hyne et al. 2005, Markich et al. 2005) and D. magna (De Schamphelaere & Janssen 2002), 
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the macrophyte Ceratophyllum demersum (Markich et al. 2006) and the green microalgae 

R. subcapitata (De Schamphelaere et al. 2003) and Chlorella sp. (Markich et al. 2005). 

The pH of a waterbody can affect metal toxicity through two opposing mechanisms:  

• pH influences metal speciation, usually resulting in increased concentrations of bioavailable 
metal species at lower pH  

• the H+ ion, which is more abundant at lower pH, competes with metals for biological uptake 
sites.  

These mechanisms can result in contradictory effects of pH on the aquatic toxicity of metals. In a 

meta-analysis of chronic copper toxicity data, Meyer et al. (2007) found positive correlations 

between pH and chronic toxicity values (i.e. as pH decreases, toxicity increases) that were statistically 

significant for P. promelas, marginally statistically significant for D. pulex, and not significant for 

D. magna. In fact, in individual studies for D. magna, the EC50 values increased (i.e. toxicity 

decreased) as pH decreased (De Schamphelaere & Janssen 2004). In many studies, the effects of pH 

are confounded by covarying alkalinity and/or hardness that may also affect copper bioavailability 

and toxicity. As changes in pH may also release metals sorbed to particulate phases or remove metals 

from the dissolved phase, models that consider the whole system (not only dissolved phases) may be 

required to better understand the role that pH plays in copper bioavailability and toxicity (Smith et 

al. 2015). 

Water temperature may affect metal toxicity due to increased metabolic rates and increased 

respiratory inflows (Khangarot & Ray 1989, Meyer et al. 2007). For copper, correlations that indicate 

higher toxicity at higher temperature have been reported for D. magna and P. promelas but not for 

O. mykiss (Meyer et al. 2007). 

DOC in waterbodies reduces copper bioavailability by forming copper-organic complexes that have 

low or no bioavailability. Lower toxicity in the presence of DOC has been reported for many test 

organisms including fish (O. mykiss, P. promelas) and invertebrates (D. magna, D. pulex), as reviewed 

in Van Sprang et al. (2008). The same effect has also been shown for Australasian species. The 

toxicity of copper to the Australian freshwater shrimp Paratya australiensis reduced approximately 

two-fold as the concentration of DOC increased two-fold (Daly et al. 1990). Markich et al. (2003) 

reported greater sensitivity of the freshwater mussel Hyridella depressa to copper at low DOC. 

3.3 Accounting for toxicity modifying factors 

The inverse relationship between water hardness and toxicity was the basis of a hardness function in 

the USEPA ambient WQC from 1984 to 2007, whereby the criterion was higher when hardness levels 

were higher (criterion continuous concentration = e (0.8545[1n(hardness)]-1.465)). The slope for the hardness 

equation used in the USEPA (1996) derivation was adopted for the ANZECC/ARMCANZ (2000) copper 

in freshwater DGV derivation. However, since then, conflicting results have been published about the 

effect of hardness on the toxicity of copper to various species, including sensitive native cladocerans 

and green microalgae (Markich et al. 2005). Based on these and other similar findings, there was 

concern that hardness corrections would not protect sensitive freshwater species; therefore, the 

current method for deriving DGVs (Warne et al. 2018) recommended that the hardness correction 

for copper not be used. 
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Since the early 2000s, biotic ligand models (BLMs) have been developed to account for the effect of 

toxicity modifying factors, including temperature, hardness, pH and DOC. The BLM incorporates the 

influences of these factors on speciation and competition by predicting metal accumulation at the gill 

(or other biological uptake site, known as the biotic ligand) of an aquatic organism (Di Toro et al. 

2001), in an adaptation of the gill-surface interaction model originally proposed by Pagenkopf (1983) 

and the free ion activity model (e.g. Campbell 1995). USEPA (2007) uses a BLM derived from acute 

toxicity data for fish and cladocerans to calculate the copper WQC (acute and chronic) at site-specific 

values for 10 factors: temperature, pH, DOC, calcium, magnesium, sodium, potassium, sulfate, 

chloride, and alkalinity. The European Union also incorporated a BLM approach into its risk 

assessment for copper (Van Sprang et al. 2008), using BLMs based on chronic toxicity data for fish 

and cladocerans (with slight differences in the model constants), to derive chronic predicted no 

effect concentrations . Most recently, Environment and Climate Change Canada has incorporated a 

BLM adjustment in its copper guideline value, based on chronic toxicity data for fish, cladocerans and 

algae (ECCC 2021). 

Brix et al. (2017, 2020, 2021) have proposed an alternative approach using multiple linear regression 

(MLR) models to account for toxicity modifiers. MLR models have been used for the proposed 

Australia and New Zealand water quality DGV for nickel in freshwater (Stauber et al. 2021), the 

Canadian water quality guideline for zinc in freshwater (CCME 2018), and the USEPA (2018) ambient 

WQC for aluminium in freshwater. 

As no BLM or MLR models for copper toxicity have been validated for Australian or New Zealand 

water quality conditions and species, an adjustment based on DOC concentration is used for the 

current DGVs. Of the modifying factors included in the BLMs and MLRs for copper, DOC is the most 

influential factor for determining copper toxicity, and it is the only factor that is consistent in all 

models and species (whereas hardness mitigates toxicity for some invertebrates and fish but not all, 

and pH influences algal toxicity differently to fish and invertebrates) (Gadd 2021). The DOC 

adjustment is similar to the previously used correction for hardness in ANZECC/ARMCANZ (2000), 

and it is used to standardise the test waters of the toxicity dataset to a low DOC concentration prior 

to DGV derivation and to calculate DGVs at differing concentrations of DOC. The basis of the DOC 

correction is summarised below, with further details provided in Gadd (2021). 

The relationship between DGVs and DOC varies at different values of pH and hardness. Slope factors 

for DOC from log-log relationships between water quality guideline values and DOC were calculated 

by Gadd (2021) based on the Canadian (ECCC 2021) and European (Van Sprang et al. 2008) BLMs, 

both of which are based on chronic toxicity data for fish, invertebrates and algae/plants. The 

Canadian model provided slightly lower, more conservative, slope factors for almost all combinations 

of pH and hardness. These slope factors were used to normalise all toxicity data to a standard DOC 

(0.5 mg/L) before calculating a DGV for dissolved copper. A slope factor of 0.977 based on a pH of 6.5 

and hardness of 11.6 mg/L was selected for the adjustment of the current DGVs (Gadd 2021; also see 

Section 4.4).  

4 Default guideline value derivation 
The DGVs were derived in accordance with the method described in Warne et al. (2018) and using 

Burrlioz 2.0 software.  
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4.1 Collation and screening of toxicity data 

The default guideline values for copper in freshwater were derived based on data from: recent 

guideline value derivations by ECCC (2021), BCMECCS (2019), Brix et al. (2021); European copper risk 

assessment (Van Sprang et al. 2008); ANZECC/ARMCANZ (2000); ECOTOX database (USEPA 2016); 

and compilations of Australasian toxicity data (Markich et al. 2002, Langdon et al. 2009). Additional 

international data were collated through searches using the journal abstracting service ‘Web of 

Science’ for studies published during 2015–2016 and not included in the ECOTOX database. 

Australian and New Zealand toxicity data (up to 2020) were included through internet searches for 

toxicity data contained within grey literature, theses or unpublished reports.  

Although there is a large number of published data on copper toxicity, not all data met the preferred 

requirements and associated acceptability criteria for the DGV derivation. Data were only included 

for studies that had measured the copper concentrations of the test solutions, or the stock solutions 

used to produce the test solutions, and that provided clear evidence that a concentration–response 

relationship was observed. Although some studies reported concentrations as total copper, all 

copper was assumed to be in dissolved form in the test solutions given that laboratory toxicity test 

solutions typically have low particulate concentrations; therefore, the DGVs are representative of 

dissolved copper concentrations.  

As there were sufficient chronic negligible effects data (i.e. NEC, EC10–20, LC10–20, NOEC) to meet 

the minimum data requirements, no acute or chronic data that required conversion to negligible 

effects values (e.g. LC50, EC50, LOEC) were needed to supplement the toxicity dataset. 

Of the chronic negligible effects data collated for the derivations, the following were excluded. Some 

toxicity data from other jurisdictions (e.g. ECCC 2021) were excluded for reasons such as the type of 

reported statistic (e.g. EC50 value) or the age of the study (studies prior to 1980 are not 

recommended by Warne et al. (2018)). Because hardness and pH may affect copper toxicity, studies 

were excluded if they were conducted under conditions of low bioavailability (i.e. hardness 

>200 mg/L as CaCO3) or where pH was within a range that may cause the organism stress (<6 or 

>8.5). Studies that reported hardness, or the concentrations of calcium and magnesium, were 

included in the derivation. Studies that did not report pH were included in the derivation as it was 

assumed that most standard laboratory synthetic test waters would have circumneutral pH. The 

exclusion rules resulted in some chronic data for some sensitive Australasian species being excluded 

from the DGV derivation (Table 1). The most sensitive species excluded were the New Zealand 

freshwater snail Potamopyrgus antipodarum and the protozoan Trachelomonas sp.  

Data for several Australian tropical species were included in the derivation despite exposure 

durations being less than recommended by Warne et al. (2018) for chronic tests. However, these test 

duration recommendations are for temperate species, and Warne et al. (2018) acknowledged that 

there was scope to relax them for tropical species. Studies on the larval (glochidial) stage of 

freshwater mussels (Clearwater et al. 2014, Markich 2017) were also included despite the test 

durations being 48–72 h. It is reasonable to consider the glochidial stage as a critical early life stage, 

similar to a larval development effect on an oyster or sea urchin. As the test duration was greater 

than or equal to the 48 h minimum for early life stage larval development/metamorphosis tests 

required by Warne et al. (2018), these study data were accepted as chronic.  
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Table 1 Summary of chronic toxicity values, chronic data for Australasian species excluded from the 
default guideline value derivation for copper in freshwater 

Taxonomic 
group 

Species Life stage Duration 
(d) 

Toxicity 
measure (test 
endpoint) 

Toxicity 
value 
(µg/L) 

Reason for 
exclusion 

Reference 

Mollusc Potamopyrgus 
antipodarum 

Juvenile / 
adult 

77–112 NOEC  
(growth) 

5 No hardness 
data 

Dorgelo et 
al. (1995) 

Crustacean Paratya 
australiensis 

Juvenile 21 EC50 
(growth) 

59 Only EC50 
data 
reported, no 
NOEC 

Bacher & 
O’Brien 
(1990) 

Macrophyte Ipomoea 
aquatica 

Seedling 14 NOEC  
(growth) 

2 500 Nominal data 
only; water 
chemistry 
not reported 

Wu & Sun 
(1998) 

Green 
microalga 

Staurastrum 
chaetoceras 

Exponential 
growth 
phase 

1–4 EC50  
(population 
biomass) 

19–774 Only EC50 
data 
reported; no 
NOEC 

Ivorra et al. 
(1995) 

Protozoan Trachelomonas 
sp. 

Exponential 
growth 
phase 

2–3 EC50  
(population 
growth rate) 

5–10 Only EC50 
data 
reported; no 
NOEC 

Franklin et 
al. (2004) 

Protozoan Trachelomonas 
sp. 

Exponential 
growth 
phase 

27 NOEC  
(population 
biomass) 

160 No hardness 
data 

Le Jeune et 
al. (2007) 

 

4.2 Toxicity data used in derivation 

Most of the data sourced from the ANZECC/ARMCANZ (2000) guidelines, the compiled Australasian 

toxicity data (Markich et al. 2002, Langdon et al. 2009), the European risk assessment (Van Sprang et 

al. 2008), the USEPA WQC (USEPA 2007), and the Canadian Federal Environmental Quality Guidelines 

(ECCC 2021) were considered to have already been assessed for quality and considered to be 

acceptable. All remaining data were quality assessed based on Warne et al. (2018), and only 

acceptable quality data were included. 

There were 396 chronic toxicity values for 59 species that were considered to be of suitable quality 

for use in the DGV derivation. Of these, approximately 40% (152 values for 34 species) were of the 

most preferred type of toxicity estimates (i.e. NECs, ECx/ICx/LCx values where x is ≤10, and bounded 

effect concentrations (BECs) where the effect is ≤10% (Warne et al. 2018)): six were NECs, 143 were 

EC/IC/LC10s and three were BEC10s. Lesser preferred toxicity estimates included 76 EC/LC11–20s, 

151 NOECs and 17 minimum detectable effect concentrations (MDECs) from 36 species.  

Warne et al. (2018) recommend using only preferred chronic toxicity values where there are 

sufficient (e.g. >8) such values. The dataset based on only the preferred values comprised 34 species 

from seven taxonomic groups. However, to increase the number and diversity of species represented 

in the dataset used for the DGV derivation, the preferred data were supplemented with EC11–20 and 

NOEC data. This resulted in data for 59 species, including 21 species native to Australia and/or New 

Zealand, from 10 taxonomic groups. There was only a 1.2-fold to 1.7-fold difference in the protective 
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concentrations (i.e. 80%, 90%, 95%, 99% species protection) between the 34 species dataset and the 

59 species dataset (Gadd 2021). Thus, the larger dataset was selected to derive the DGVs. 

Toxicity data based on DOC >0.5 mg/L were adjusted to a DOC of 0.5 mg/L based on a slope factor 

closest to the pH and hardness concentration of the test waters (Gadd 2021) using the equation in 

Figure 1. Data from tests conducted at DOC ≤0.5 mg/L, or where DOC was not reported and was 

assumed to be ≤0.5 mg/L, were not adjusted (approximately 60%). The slope factors ranged from 

0.977 to 1.08 and had the effect of reducing the majority of the toxicity values. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐸𝐶10 = 𝐸𝐶10 ÷ (
𝐷𝑂𝐶𝑡𝑒𝑠𝑡

0.5
)

𝑠𝑙𝑜𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

 

Figure 1 Equation for adjusting to DOC of 0.5 mg/L based on slope factor 

The acceptable toxicity data were summarised to single species values for use in the species 

sensitivity distribution (SSD), by either calculating geometric means or selecting the value for the 

most sensitive endpoint, life-stage and toxicity test duration for each species, based on Warne et al. 

(2018). A summary of the toxicity data (one value per species) used to calculate the DGVs for copper 

in freshwater is provided in Table 2. The 59 species included in the SSD (see Table 2 and Figure 2) 

were from 10 taxonomic groups: bacteria (one species), cnidarians (one species), rotifers (one 

species), fungi (one species), insects (two species), macrophytes (three species), green microalgae 

(six species), crustaceans (11 species) fish (15 species) and molluscs (18 species). The toxicity values 

in the SSD ranged over approximately three orders of magnitude, from 0.3 µg/L for Moinodaphnia 

macleayi, normalised from an EC10 of 1.0 µg/L (6 d reproduction tests) (Trenfield et al. 2022) to 

180 µg/L for a groundwater-isolated strain of Penicillum (21 d growth test) (Lategan & Hose 2014). 

Further details of the water quality parameters for each single species value used to calculate the 

DGVs are presented in Appendix A: Toxicity data that passed the screening and quality assessment 

and were used to derive the default guideline values. Details of the data quality assessment and the 

data that passed the quality assessment are provided as supporting information. 

As the different mechanisms of copper toxicity suggest the potential to exhibit bimodality or 

multimodality, the toxicity dataset was assessed for this following the weight of evidence approach 

recommended in Warne et al. (2018). Although copper is a well-known algaecide and fungicide, algal 

and macrophyte toxicity values were spread evenly across the SSD, and the fungal species was the 

least sensitive of all included (Figure 2). The data were not indicative of bimodality based on 

histogram statistics, a bimodality coefficient of 0.37 for the log-transformed dataset (less than the 

threshold criterion for bimodality of 0.55), and the even spread of taxa (from toxicity studies 

spanning four decades) in the SSD (Figure 2). Therefore, the dataset was deemed to be unimodal, 

and all the toxicity data (i.e. from 59 species) were used for the derivation. 
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Table 2 Summary of single chronic toxicity values, all species used to derive default guideline 
values for copper in freshwater 

Taxonomic 
group 

Species Life stage Duration 
(d) 

Toxicity measure (test 
endpoint) 

Toxicity value 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Fish Acipenser transmontanus Larva 53 EC10 (growth) 1.1 

Cirrhinus mrigala Juvenile 60 NOEC (growth) 100 

Cottus bairdi Juvenile 21–28 NOEC (mortality) 8.5 

Cyprinella monacha Larva 30 IC10 (growth) 23 

Etheostoma fonticola Larva 30 IC10 (biomass) 8.1 

Galaxias maculatus Juvenile 21 NOEC (mortality) 18 

Gobiomorphus cotidianus Juvenile 18 NOEC (mortality) 10 

Melanotaenia splendida 
inornata 

Adult 30 NOEC (reproduction) 12 

Mogurnda mogurnda Larva 7 EC10 (growth) 3.5 

Oncorhynchus kisutch Juvenile 60 NOEC (growth) 3.6 

Oncorhynchus mykiss Juvenile 30 LC10 (mortality) 5.5 

Pelteobagrus fulvidraco Juvenile 42 NOEC (growth) 71 

Perca fluviatilis  Juvenile 30 NOEC (growth) 19 

Pimephales promelas Larva 30 IC10 (growth) 8 

Prosopium williamsoni Embryo 90 NOEL (growth) 1.0 

Mollusc Alathyria profuga Larva 3 NEC (development) 1.2 

Amerianna cumingi Adult 4 EC10 (reproduction) 1.4 

Cucumerunio 
novaehollandiae 

Larva 3 NEC (development) 0.7 

Echyridella menziesii Larva 2 EC20 (mortality) 0.4 

Epioblasma capsaeformis Juvenile 28 IC10 (mortality) 3.1 

Fluminicola sp. Adult/juvenile 28 NOEC (mortality) 5.5 

Fontigens aldrichi Adult/juvenile 28 EC10 (mortality) 7.1 

Hyridella australis Larva 3 NEC (development) 0.8 

Hyridella depressa Larva 3 NEC (development) 0.9 

Hyridella drapeta Larva 3 NEC (development) 1.0 

Juga plicifera – 30 NOEC (mortality) 6.0 

Lymnaea stagnalis – 30 EC20 (growth) 0.7 

Physa gyrina Juvenile 28 EC10 (growth) 10 

Pomacea paludosa Adult/juvenile 60 NOEC (growth) 8.8 

Pyrgulopsis robusta Larva/juvenile 28 EC10 (mortality) 4.9 

Taylorconcha serpenticola Adult/juvenile 28 LC20 (mortality) 11 

Velesunio ambiguus Larva 3 NEC (development) 1.3 

Villosa iris Adult/juvenile 28 EC10 (growth) 1.5 



Toxicant default guideline values for aquatic ecosystem protection: Dissolved copper in freshwater 

Australian and New Zealand Guidelines for Fresh and Marine Water Quality 11 

Taxonomic 
group 

Species Life stage Duration 
(d) 

Toxicity measure (test 
endpoint) 

Toxicity value 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Crustacean Ceriodaphnia dubia Larva 7 EC10 (reproduction) 3.6 

Daphnia ambigua Larva 10 EC10 (reproduction) 24 

Daphnia longispina Larva 21 NOEC (population 
growth rate) 

25 

Daphnia magna Larva 21 EC20 (reproduction) 4.5 

Daphnia thomsoni Neonate 14 IC10 (reproduction) 5.4 

Gammarus pulex – 100 NOEC (population 
growth rate) 

5.4 

Hyalella azteca Juvenile 15–35 NOEC (mortality/ 
reproduction) 

16 

Moinodaphnia macleayi Neonate 6 EC10 (reproduction) 0.3 

Paracalliope fluviatilis Juvenile 32 NOEC (mortality) 10 

Paranephrops planifrons Juvenile 14 LC10 (mortality) 175 

Paratanytarsus 
parthenogeneticus  

– 16 NOEC (growth/ 
reproduction) 

40 

Insect Chironomus riparius Larva 10 NOEC (growth) 17 

Clistorina magnifica Larva 240 NOEC (life cycle) 3.7 

Rotifer Brachionus calyciflorus Larva 2 EC20 (reproduction) 2.1 

Cnidarian Hydra viridissima Budding adult 4 EC10 (population 
growth rate) 

0.6 

Macrophyte Lemna aequinoctialis – 4 EC10 (population 
growth rate) 

1.8 

Lemna minor – 7 EC10 (growth) 0.8 

Zizania palustris Seedling 14 NOEC (growth) 14 

Green 
microalga  

Chlamydomonas reinhardtii Exponential 
growth phase 

10 NOEC (population 
growth rate) 

22 

Chlorella sp. (eriss) Exponential 
growth phase 

3 EC10 (growth rate) 0.4 

Chlorella sp. (PNG) – 3 EC10 (growth rate) 0.9 

Chlorella vulgaris Exponential 
phase 

3 EC10 (population 
growth rate) 

6.9 

Monoraphidium arcuatum – 3 EC10 (growth rate) 0.45 

Raphidocelis subcapitata Exponential 
growth phase 

3 EC10 (population 
abundance) 

2.0 

Fungus  Penicillium strain Spore 21 IC10 (population 
growth rate) 

180 

Bacterium Isolate 37 Unidentified sp. – 2 EC15 (population 
growth rate) 

2.8 

– : No data / not stated. 
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4.3 Species sensitivity distribution 

The cumulative frequency (species sensitivity) distribution (SSD) based on the 59 chronic toxicity data 

for dissolved copper in freshwater (Table 2) is shown in Figure 2. The SSD was plotted using the 

Burrlioz 2.0 software. The model provided a good fit to the data. 

 

Figure 2 Species sensitivity distribution, dissolved copper in freshwater 

4.4 Default guideline values 

It is important that the DGVs (Table 3) and associated information in this technical brief are used in 

accordance with the detailed guidance provided in the Australian and New Zealand Guidelines for 

Fresh and Marine Water Quality website (ANZG 2018).  

The DGVs for 99%, 95%, 90% and 80% species protection are shown in Table 3. The DGVs apply to 

dissolved copper (operationally defined as the <0.45 µm filtered measurement) and in water with 

DOC ≤0.5 mg/L, hardness between 2 mg/L as CaCO3 and 200 mg/L as CaCO3 and pH between 6 and 

8.5. The 95% species protection DGV is recommended for application to slightly-to-moderately 

disturbed ecosystems.  
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Table 3 Toxicant default guideline values, dissolved copper in freshwater at ≤0.5 mg/L dissolved 
organic carbon, very high reliability 

Level of species protection (%) DGV for dissolved copper in freshwater (g/L) a 

99 0.20 

95 0.47 

90 0.73 

80 1.3 

a DGVs were derived using the Burrlioz 2.0 software, and apply to water with a DOC of ≤0.5 mg/L, a pH range of 6–8.5 and 

hardness range of 2–200 mg CaCO3/L. DGVs have been rounded to one or two significant figures. 

The DGVs can be adjusted to the DOC concentrations of ambient water (up to 30 mg/L) based on the 

equation in Figure 3 or using the DGVs for different DOC concentrations provided in Table 4. For 

freshwater with DOC >30 mg/L and/or outside the specified pH and hardness ranges, site-specific 

factors affecting toxicity should be considered, including modelling of metal speciation (see 

Appendix B: Actions to assess the bioavailable fraction of a metal).  

𝐷𝑂𝐶 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐷𝐺𝑉 = 𝐷𝐺𝑉0.5 × (
𝐷𝑂𝐶

0.5
)

0.977

 

Figure 3 Equation for calculating DOC adjusted DGVs 

 

Table 4 Toxicant default guideline values, dissolved copper in freshwater at different dissolved 
organic carbon concentrations, very high reliability 

DOC concentration 
(mg/L) 

DGV for dissolved copper in freshwater, different levels of species protection (g/L)  

99% 95% 90% 80% 

0.5 0.20 0.47 0.73 1.3 

1 0.39 0.93 1.4 2.6 

2 0.77 1.8 2.8 5.0 

4 1.5 3.6 5.6 9.9 

8 3.0 7.1 11 20 

12 4.5 10 16 29 

16 5.9 14 22 38 

20 7.3 17 27 48 

25 9.1 21 33 59 

30 11 26 40 71 
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4.5 Reliability classification  

The dissolved copper in freshwater DGVs have a very high reliability classification (Warne et al. 2018) 

based on the outcomes for the following three criteria: 

• sample size—59 (preferred) 

• type of toxicity data—chronic  

• SSD model fit—good (Burr Type III model). 
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Glossary 
Term Definition 

acute toxicity A lethal or adverse sublethal effect that occurs as the result of a short exposure 
period to a chemical relative to the organism’s life span. 

acute-to-chronic ratio The species mean acute value (LC50/EC50) divided by the chronic value (e.g. NOEC 
or EC10) for the same species. 

BLM Biotic ligand model. 

chronic toxicity A lethal or sublethal adverse effect that occurs after exposure to a chemical for a 
period of time that is a substantial portion of the organism’s life span or an adverse 
effect on a sensitive early life stage. 

default guideline value (DGV) A guideline value recommended for generic application in the absence of a more 
specific guideline value (e.g. site-specific) in the Australian and New Zealand 
Guidelines for Fresh and Marine Water Quality. Formerly known as ‘trigger values’. 

DOC Dissolved organic carbon. 

DOM Dissolved organic matter. 

EC50 (median effective 
concentration) 

The concentration of a substance in water or sediment that is estimated to produce 
a 50% change in the response being measured or a certain effect in 50% of the test 
organisms relative to the control response, under specified conditions. 

ECx The concentration of a substance in water or sediment that is estimated to produce 
an x% change in the response being measured or a certain effect in x% of the test 
organisms, under specified conditions. 

endpoint The specific response of an organism that is measured in a toxicity test (e.g. 
mortality, growth, a particular biomarker). 

guideline value  A measurable quantity (e.g. concentration) or condition of an indicator for a 
specific community value below which (or above which, in the case of stressors 
such as pH, dissolved oxygen and many biodiversity responses) there is considered 
to be a low risk of unacceptable effects occurring to that community value. 
Guideline values for more than one indicator should be used simultaneously in a 
multiple lines of evidence approach. (Also refer to default guideline value and site-
specific guideline value.) 

ICx The concentration of a substance in water or sediment that is estimated to produce 
an x% inhibition of the response being measured in test organisms relative to the 
control response, under specified conditions.  

LC50 (median lethal 
concentration) 

The concentration of a substance in water or sediment that is estimated to be 
lethal to 50% of a group of test organisms, relative to the control response, under 
specified conditions. 

LCx The concentration of a substance in water or sediment that is estimated to be 
lethal to x% of a group of test organisms under specified conditions. 

LOEC (lowest observed effect 
concentration) 

The lowest concentration of a material used in a toxicity test that has a statistically 
significant adverse effect on the exposed population of test organisms as compared 
with the controls. 

MATC (maximum acceptable 
toxicant concentration) 

The geometric mean of the lowest exposure concentration that causes a 
statistically significant adverse effect (LOEC) and the highest exposure 
concentration where no statistically significant effect is observed (NOEC). 

MDEC (minimum detectable 
effect concentration) 

The effect that produces a minimal detectable response that is statistically 
significantly different (p>0.05) to controls (Ahsanullah & Williams 1991). 

MLR Multiple linear regression. 
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Term Definition 

NEC (no effect concentration)  The maximum concentration of a toxicant that causes no adverse effect in a target 
organism. 

NOEC (no observed effect 
concentration) 

The highest concentration of a material used in a toxicity test that has no 
statistically significant adverse effect on the exposed population of test organisms 
as compared with the controls. 

site-specific guideline value A guideline value that is relevant to the specific location or conditions that are the 
focus of a given assessment or issue. 

species (biological) A group of organisms that resemble each other to a greater degree than members 
of other groups and that form a reproductively isolated group that will not produce 
viable offspring if bred with members of another group. 

species (chemical) Most commonly used for metals, chemical species are different forms of a 
particular chemical that may include different oxidation states, isotopes, complexes 
with organic ligands (in the case of metals) or with particulate matter. 

SSD (species sensitivity 
distribution)  

A method that plots the cumulative frequency of species’ sensitivities to a toxicant 
and fits a statistical distribution to the data. From the distribution, the 
concentration that should theoretically protect a selected percentage of species 
can be determined. 

toxicity The inherent potential or capacity of a material to cause adverse effects in a living 
organism. 

toxicity test The means by which the toxicity of a chemical or other test material is determined. 
A toxicity test is used to measure the degree of response produced by exposure to 
a specific level of stimulus (or concentration of chemical) for a specified test period. 

WQC Water quality criterion, from USEPA (2007). 
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Appendix A: Toxicity data that passed the screening and 
quality assessment and were used to derive the default 
guideline values 
Table A 1 Summary of chronic toxicity data used to derive the freshwater copper default guideline values 

Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

Fish Acipenser 
transmontanus 

Larva 53 EC10 (growth) 15 8.1 101 0.4 1.1 1.1 USGS 2014 

– 1.1 Value used in SSD 

Cirrhinus mrigala Juvenile 60 NOEC (growth) 26 7.6 135 – 100 100 Mohanty et al. (2009)  

– 100 Value used in SSD 

Cottus bairdi Juvenile 21 NOEC (mortality) – 8.3 101 0.5 2.9 2.9 Besser et al. (2007)  

Juvenile 28 NOEC (mortality) – 8.2 104 0.5 25 25 Besser et al. (2007) 

– 8.5 Value used in SSD 
(geometric mean) 

Cyprinella monacha Larva 30 IC10 (growth) 25 8.3 162 – 23 23 Besser et al. (2005)  

– 23 Value used in SSD 

Etheostoma fonticola Larva 30 IC10 (biomass) 23 8.3 170 – 7.1 7.1 Besser et al. (2005)  

Larva 30 IC10 (biomass) 23 8.3 170 – 9.3 9.3 Besser et al. (2005)  

– 8.1 Value used in SSD 
(geometric mean)  

Galaxias maculatus Juvenile 21 NOEC (mortality) 20 7.8 39 – 18 18 Hickey et al. (2000)  
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

– 18 Value used in SSD 

Gobiomorphus 
cotidianus 

Juvenile 18 NOEC (mortality) – 7.0 37 0.5 10 10 Hickey et al. (2000)  

– 10 Value used in SSD 

Melanotaenia splendida 
inornata 

Adult 30 NOEC 
(reproduction) 

25 7.5 54 – 12 12 Skidmore (1986)  

– 12 Value used in SSD 

Mogurnda mogurnda Larva 7 EC10 (growth) 27 6.7 3.1 1.4 9.6 3.5 Trenfield et al. (2022)  

– 3.5 Value used in SSD 

Oncorhynchus kisutch Juvenile 60 NOEC (growth) – 7.1 32 2.9 21 3.6 Mudge et al. (1993) 

– 3.6 Value used in SSD 

Oncorhynchus mykiss Juvenile 30 LC10 (mortality) 13 7.1 21 0.4 3.9 3.9 Crémazy et al. (2017)  

Juvenile 30 LC10 (mortality) 13 7.1 60 0.5 4.6 4.6 Crémazy et al. (2017)  

Juvenile 30 LC10 (mortality) 13 6.2 13 0.5 4.7 4.7 Crémazy et al. (2017)  

Juvenile 30 LC10 (mortality) 13 7.9 11 0.5 7.6 7.6 Crémazy et al. (2017)  

Juvenile 30 LC10 (mortality) 13 7.1 20 2.2 27 5.4 Crémazy et al. (2017)  

Juvenile 30 LC10 (mortality) 13 7.0 23 5.6 87 6.3 Crémazy et al. (2017)  

Juvenile 30 LC10 (mortality) 13 7.0 24 11.0 150 6.7 Crémazy et al. (2017)  

– 5.5 Value used in SSD 
(geometric mean) 

Pelteobagrus fulvidraco Juvenile 42 NOEC (growth) 21.9 7.6 62 – 71 71 Chen et al. (2013) 

– 71 Value used in SSD  

Perca fluviatilis  Juvenile 30 NOEC (growth) – 7.8 194 1.0 39 19 Collvin (1985)  

– 19 Value used in SSD 
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

Pimephales promelas Larva 30 IC10 (growth) 25 8.3 170 – 4 4 Besser et al. (2005)  

Larva 30 IC10 (growth) 23 8.3 170 – 16 16 Besser et al. (2005)  

– 8 Value used in SSD 
(geometric mean) 

Prosopium williamsoni Embryo 90 NOEL (growth) 9.6 6.8 48 1.9 3.9 1.0 Brinkman & Vieira 
(2008)  

– 1.0 Value used in SSD 

Mollusc Alathyria profuga Larva 3 NEC (development) 22 7.0 42 0.1 1.2 1.2 Markich (2017)  

– 1.2 Value used in SSD 

Amerianna cumingi Adult 4 EC10 (reproduction) 29.5 6.7 2.1 2.1 5.7 1.4 Trenfield et al. (2022)  

– 1.4 Value used in SSD 

Cucumerunio 
novaehollandiae 

Larva 3 NEC (development) 22 7.0 42 0.1 0.7 0.7 Markich (2017)  

– 0.7 Value used in SSD 

Echyridella menziesii Larva 2 EC20 (mortality) 20.5 7.8 30 2.5 1.2 0.2 Clearwater et al. 
(2014)  

Larva 2 EC20 (mortality) 20.5 7.8 30 2.5 2.7 0.5 Clearwater et al. 
(2014)  

Larva 2 EC20 (mortality) 20.5 7.8 30 2.5 1.8 0.4 Clearwater et al. 
(2014)  

– 0.4 Value used in SSD 
(geometric mean) 

Epioblasma 
capsaeformis 

Juvenile 28 IC10 (mortality) 20 8.2 162 – <3.1 3.1 Wang et al. (2007)  

– 3.1 Value used in SSD 
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

Fluminicola sp. Adult/juvenile 28 NOEC (mortality) – 8.4 166 0.6 6.6 5.5 Besser et al. (2009) 

– 5.5 Value used in SSD 

Fontigens aldrichi Adult/juvenile 28 EC10 (mortality) – 8.3 166 0.7 10 7.1 Besser et al. (2016) 

– 7.1 Value used in SSD 

Hyridella australis Larva 3 NEC (development) 22 7.0 42 0.1 0.8 0.8 Markich (2017) 

– 0.8 Value used in SSD 

Hyridella depressa Larva 3 NEC (development) 22 7.0 42 0.1 0.9 0.9 Markich (2017) 

– 0.9 Value used in SSD 

Hyridella drapeta Larva 3 NEC (development) 22 7.0 42 0.1 1.0 1.0 Markich (2017) 

– 1.0 Value used in SSD 

Juga plicifera – 30 NOEC (mortality) – 7.1 23 – 6.0 6.0 Nebeker et al. (1986) 

– 6.0 Value used in SSD 

Lymnaea stagnalis – 14 EC10 (growth) 21 7.8 116 0.8 3.7 2.4 Crémazy et al. (2018) 

– 30 EC20 (growth) 24 7.8 56 1.2 1.8 0.7 Brix et al. (2011) 

– 0.7 Value used in SSD 

Physa gyrina Juvenile 28 EC10 (growth) 20 8.3 170 0.6 12 10 Besser et al. (2016) 

– 10 Value used in SSD 

Pomacea paludosa Adult/juvenile 60 NOEC (growth) 28 7.9 70 – 8.8 8.8 Rogevich et al. (2009) 

– 8.8 Value used in SSD  

Pyrgulopsis robusta Larva/juvenile 28 EC10 (mortality) – 8.2 170 0.6 5.9 4.9 Besser et al. (2016) 

– 4.9 Value used in SSD 

Taylorconcha 
serpenticola 

Adult/juvenile 28 LC20 (mortality) – 8.4 166 0.6 13 11 Besser et al. (2016) 
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

– 11 Value used in SSD 

Velesunio ambiguus Larva 3 NEC (development) 22 7.0 42 0.1 1.3 1.3 Markich (2017) 

– 1.3 Value used in SSD 

Villosa iris Adult/juvenile 28 EC10 (growth) 20 8.3 101 0.5 6.2 6.2 Wang et al. (2011) 

Adult/juvenile 28 EC10 (growth) 20 8.2 100 10.0 21 1.0 Wang et al. (2011) 

Adult/juvenile 28 EC10 (growth) 20 8.3 98 3.0 3.8 0.6 Wang et al. (2011) 

– 1.5 Value used in SSD 
(geometric mean) 

Insect Chironomus riparius Larva 10 NOEC (growth) – 6.9 151 0.5 17 17 Taylor et al. (1991) 

– 17 Value used in SSD 

Clistorina magnifica Larva 240 NOEC (life cycle) 20 7.6 26 1.1 8.3 3.7 Nebeker et al. (1984) 

– 3.7 Value used in SSD 

Crustacean Ceriodaphnia dubia Larva 7 EC10 (reproduction) 20 8.4 105 0.4 11 11 Wang et al. (2011) 

Larva 7 EC10 (reproduction) 20 8.3 106 5.8 29 2.3 Wang et al. (2011) 

Larva 7 EC10 (reproduction) 20 8.3 106 10.0 25 1.1 Wang et al. (2011) 

Larva 7 EC10 (reproduction) 20 8.3 103 5.8 46 3.7 Wang et al. (2011) 

Larva 7 EC10 (reproduction) 20 8.3 102 3.0 34 5.4 Wang et al. (2011) 

– 3.6 Value used in SSD 
(geometric mean)  

Daphnia ambigua Larva 10 EC10 (reproduction) 21 8.0 63 – 24 24 Harmon et al. (2003) 

– 24 Value used in SSD 

Daphnia longispina Larva 21 NOEC (population 
growth rate) 

20 7.8 180 – 5.5 5.5 Agra et al. (2011) 
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

Larva 21 NOEC (population 
growth rate) 

20 7.8 180 – 85 85 Agra et al. (2011) 

Larva 21 NOEC (population 
growth rate) 

20 7.8 180 – 42 42 Agra et al. (2011) 

Larva 21 NOEC (population 
growth rate) 

20 7.8 180 – 21 21 Agra et al. (2011) 

– 25 Value used in SSD 
(geometric mean) 

Daphnia magna Larva 21 EC20 (reproduction) 20 6.1 100 5.6 42 a 3.6 De Schamphelaere & 
Janssen (2004) 

Larva 21 EC20 (reproduction) 20 6.1 100 16.9 85 a 2.4 De Schamphelaere & 
Janssen (2004) 

Larva 21 EC20 (reproduction) 20 6.1 100 6.2 39 a 3.1 De Schamphelaere & 
Janssen (2004) 

Larva 21 EC20 (reproduction) 20 6.1 100 16.9 96 a 2.7 De Schamphelaere & 
Janssen (2004) 

Larva 21 EC20 (reproduction) 20 6.2 100 5.0 38 a 3.7 De Schamphelaere & 
Janssen (2004) 

Larva 21 EC20 (reproduction) 20 6.2 100 14.5 118 a 3.9 De Schamphelaere & 
Janssen (2004) 

Larva 21 EC20 (reproduction) 20 7.9 100 13.5 225 a 7.9 De Schamphelaere & 
Janssen (2004) 

Larva 21 EC20 (reproduction) 20 7.1 25 9.1 121 a 6.5 De Schamphelaere & 
Janssen (2004) 

Larva 21 EC20 (reproduction) 20 7.9 100 4.8 92 a 9.2 De Schamphelaere & 
Janssen (2004) 

Larva 21 EC20 (reproduction) 20 8.4 21 2.0 28 a 5.5 Villavicencio et al. 
(2011)  
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

Larva 21 EC20 (reproduction) 20 8.4 43 2.0 28 a 6.6 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.4 85 2.0 29 a 7.0 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.2 21 2.0 16 a 3.1 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.1 43 2.0 19 a 4.5 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.1 85 2.0 26 a 6.2 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.2 169 2.0 20 a 4.8 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 7.6 21 2.0 7.3 a 1.5 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 7.5 43 2.0 9.8 a 2.4 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 7.5 85 2.0 13 a 3.3 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 7.5 169 2.0 19 a 4.5 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 7.5 21 2.0 8.2 a 1.7 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 7.6 21 2.0 15 a 3.1 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.3 111 1.0 14 a 7.0 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.4 122 0.8 13 a 8.3 Villavicencio et al. 
(2011) 
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

Larva 21 EC20 (reproduction) 20 8.3 109 1.0 16 a 7.8 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 7.9 76 0.3 6.3 a 6.3 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.0 94 1.3 9.3 a 3.5 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.0 32 1.0 5.4 a 2.6 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 7.8 14 0.8 8.5 a 5.0 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.0 18 0.5 10 a 10 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 7.9 10 1.1 9.2 a 3.8 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.0 12 1.1 8.6 a 3.4 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.0 13 1.8 12 a 2.6 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.0 14 1.2 8.6 a 3.1 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.0 26 0.6 9.7 a 8.0 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.0 12 0.7 7.9 a 5.3 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.4 70 0.2 11 a 11 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 8.2 33 0.5 12 a 12 Villavicencio et al. 
(2011) 
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

Larva 21 EC20 (reproduction) 20 7.6 21 2.0 15 a 3.3 Villavicencio et al. 
(2011) 

Larva 21 EC20 (reproduction) 20 7.5 21 2.0 16 a 3.3 Villavicencio et al. 
(2011) 

– 4.5 Value used in SSD 
(geometric mean) 

Daphnia thomsoni Neonate 14 IC10 (reproduction) – 7.2 20 4.5 65 5.4 Thompson et al. 
(2021) 

– 5.4 Value used in SSD 

Gammarus pulex – 100 NOEC (population 
growth rate) 

11 8.0 103 1.0 11 5.4 Maund et al. (1992) 

– 5.4 Value used in SSD 

Hyalella azteca Juvenile 15 NOEC (mortality) 22 7.6 128 1.0 32 16 Othman & Pascoe 
(2002) 

Juvenile 35 NOEC 
(reproduction) 

22 7.6 128 1.0 32 16 Othman & Pascoe 
(2002) 

– 16 Value used in SSD 

Moinodaphnia macleayi Neonate 6 EC10 (reproduction) 26.5 6.6 2.8 2.0 1.0 0.3 Trenfield et al. (2022) 

– 0.3 Value used in SSD  

Paracalliope fluviatilis Juvenile 32 NOEC (mortality) 20 7.8 39 – 10 10 Hickey et al. (2000) 

– 10 Value used in SSD 

Paranephrops 
planifrons 

Juvenile 14 LC10 (mortality) 17.9 7.8 37 0.5 175 175 Albert et al. (2021) 

– 175 Value used in SSD 

Paratanytarsus 
parthenogeneticus 

– 16  NOEC (growth) – 7.0 25 0.5 40 40 Hatakeyama & 
Yasuno (1981) 
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

– 16 NOEC 
(reproduction) 

– 7.0 25 0.5 40 40 Hatakeyama & 
Yasuno (1981) 

– 40 Value used in SSD 

Rotifer Brachionus calyciflorus Larva 2 EC20 (reproduction) 25 6.0 100 4.9 9.6 1.0 De Schamphelaere et 
al. (2006) 

Larva 2 EC20 (reproduction) 25 6.0 100 14.5 39 1.3 De Schamphelaere et 
al. (2006) 

Larva 2 EC20 (reproduction) 25 7.8 100 4.8 48 4.8 De Schamphelaere et 
al. (2006) 

Larva 2 EC20 (reproduction) 25 7.8 100 14.7 110 3.5 De Schamphelaere et 
al. (2006) 

– 2.1 Value used in SSD 
(geometric mean) 

Cnidarian Hydra viridissima Budding adult 4 NOEC (population 
growth rate) 

26.5 6.6 2.7 2.1 2.5 0.6 Trenfield et al. (2022) 

– 0.6 Value used in SSD 

Macrophyte Lemna aequinoctialis – 4 EC10 (population 
growth rate) 

29 6.8 3.1 2.0 6.8 1.8 Trenfield et al. (2022) 

– 1.8 Value used in SSD 

Lemna minor – 7 EC10 (growth) 25 7.6 163 1.0 2.1 1.0 Antunes et al. (2012) 

– 7 EC10 (growth) 25 7.9 184 1.0 0.7 0.3 Antunes et al. (2012) 

– 7 EC10 (growth) 25 7.5 35 2.0 3.8 0.9 Antunes et al. (2012) 

– 7 EC10 (growth) 25 7.4 96 2.0 5.9 1.5 Antunes et al. (2012) 

– 0.8 Value used in SSD 
(geometric mean) 

Zizania palustris Seedling 14 NOEC (growth) – 6.8 89 5.0 37 3.7 Nimmo et al. (2003) 
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

Seedling 14 NOEC (growth) – 6.8 89 7.1 201 14 Nimmo et al. (2003) 

Seedling 14 NOEC (growth) – 6.8 89 <1 54 54 Nimmo et al. (2003) 

– 14 Value used in SSD 

Green 
microalga 

Chlamydomonas 
reinhardtii 

Exponential 
growth phase 

10 NOEC (population 
growth rate) 

24 6.6 25 

 

22 22 Schafer et al. (1994) 

– 22 Value used in SSD 

Chlorella sp. (eriss) Exponential 
growth phase 

3 EC10 (growth rate) 29 6.3 1.9 2.1 1.6 0.4 Trenfield et al. (2022) 

– 0.4 Value used in SSD 

Chlorella sp. (PNG) – 3 EC10 (growth rate) 27 – 85 0.5 0.9 0.9 Adams et al. (2018) 

– 0.9 Value used in SSD 

Chlorella vulgaris Exponential 
growth phase 

3 EC10 (population 
growth rate) 

25 6.0 100 5.2 108 10 De Schamphelaere & 
Janssen (2006) 

Exponential 
growth phase 

3 EC10 (population 
growth rate) 

25 6.0 100 15.5 407 13 De Schamphelaere & 
Janssen (2006) 

Exponential 
growth phase 

3 EC10 (population 
growth rate) 

25 7.9 100 5.3 31 2..8 De Schamphelaere & 
Janssen (2006) 

Exponential 
growth phase 

3 EC10 (population 
growth rate) 

25 7.9 100 15.7 188 5.6 De Schamphelaere & 
Janssen (2006) 

Exponential 
growth phase 

3 EC10 (population 
growth rate) 

25 7.1 25 10.3 159 7.6 De Schamphelaere & 
Janssen (2006) 

– 6.9 Value used in SSD 
(geometric mean) 

Monoraphidium 
arcuatum 

– 3 EC10 (growth rate) 27 – 85 – 0.5 0.45 Adams et al. (2018) 

– 0.45 Value used in SSD 
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Taxonomic 
group  

Species Life stage Exposure 
duration 
(d) 

Toxicity measure 
(test endpoint) 

Temp. 
(°C) 

pH Water 
hardness 
(mg CaCO3/L) 

DOC Reported 
concentration 
(µg/L) 

Concentration 
normalised to 
0.5 mg/L DOC 
(µg/L) 

Reference 

Raphidocelis 
subcapitata 

Exponential 
growth phase 

3 EC10 (population 
abundance) 

25 8.0 100 5.4 18 1.6 De Schamphelaere et 
al. (2003) 

Exponential 
growth phase 

3 EC10 (population 
abundance) 

25 8.1 100 15.3 68 2.0 De Schamphelaere et 
al. (2003) 

Exponential 
growth phase 

3 EC10 (population 
abundance) 

25 7.2 25 10.4 53 2.5 De Schamphelaere et 
al. (2003) 

– 2.0 Value used in SSD 
(geometric mean) 

Fungus Penicillium strain Spore 21 IC10 (population 
growth rate) 

21 7.3 52 – 180 180 Lategan & Hose 
(2014) 

– 180 Value used in SSD 

Bacterium Isolate 37 Unidentified 
sp. 

– 2 EC15 (population 
growth rate) 

30 7.8 60 – 2.8 2.8 Davies et al. (1998) 

– 2.8 Value used in SSD 

a EC20 value derived by Brix et al. (2017) using raw data from original study. 
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Appendix B: Actions to assess the 
bioavailable fraction of a metal 
A decision tree for evaluating monitoring data against default guideline values (DGVs) or site-specific 

guideline values for dissolved copper in freshwater, which includes consideration of the bioavailable 

fraction, is shown in Figure B 1. The outcomes of the process shown here for water chemistry 

assessment should be used with other lines of evidence (e.g. biodiversity assessment or direct 

toxicity assessment) in a weight of evidence approach to assess overall water quality.  

With respect to the modelling of bioavailable copper, it is necessary to consider simple ionic 

complexes; however, it is also known that there are colloidal forms and weak ionic complexes that 

can dissociate and cross biological membranes. Approaches such as the biotic ligand model (BLM) for 

copper in freshwater (e.g. USEPA 2007, ECCC 2021) are appropriate modelling options. Alternatively, 

speciation modelling is also an option; for example, the Windermere Humic Aqueous Model 

(WHAM7), which includes a solution speciation model as well as sub-models for ion binding to humic 

and fulvic acids, clay and oxides of iron, aluminium, manganese and silica (UKCEH 2021). Bioavailable 

copper can be measured using a range of techniques designed to measure the ‘labile’ fraction of 

metals that has been shown to correlate with the biologically available fraction (see Batley et al. 

2004). Currently, the use of Chelex columns and diffusive gradients in thin films (DGT) are the most 

widely used approaches.  

The bioavailable fraction of copper should be compared to the DGV (at a DOC of 0.5 mg/L; i.e. not 

adjusted for the local DOC concentration). 

 

Figure B 1 Actions to assess bioavailable fraction of copper in freshwater  
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