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[bookmark: _Toc64624219]Summary
The default guideline values (DGVs) and associated information in this technical brief should be used in accordance with the detailed guidance provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality website (www.waterquality.gov.au/anz-guidelines). 
Glyphosate (N-(phosphonomethyl) glycine, CAS No. 1071-83-6) is a common non-selective, systemic organophosphorus herbicide. Other organophosphorus herbicides include bensulide, fosamine and glufosinate. Glyphosate exerts its toxicity to plants by binding to and inhibiting the enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, which prevents the formation of a range of hormones, vitamins and other essential plant metabolites through an inhibition of aromatic amino acid synthesis (APVMA 2014, Myers et al. 2016). Non-agricultural uses include the application of glyphosate to urban and industrial situations (i.e. home gardens and roadsides/golf courses) as well as aquatic weed control in public waterways, most commonly through the use of commercial formulations (CCME 2012, ANZECC/ARMCANZ 2000;). Glyphosate is the most widely used herbicide in Australia and is prevalent in aquatic ecosystems. There are concerns about the potential for some glyphosate formulations to exhibit higher toxicity in comparison to the parent compound (ANZECC/ARMCANZ 2000, AATSE 2002).
The previous Australian and New Zealand default guideline values (DGVs) for glyphosate in freshwater environments were based on acute toxicity data for 18 freshwater species consisting of fish, amphibians, crustaceans and other invertebrates (Warne 2001). More data on glyphosate chronic toxicity to freshwater species are now available, which has enabled the derivation of improved DGVs compared to those in ANZECC/ARMCANZ (2000).
The available chronic toxicity data for glyphosate ranged from 100 µg/L for the green algae Chlorella vulgaris (also called Chlorella pyrenoidosa) (72-hour growth inhibition LOEC), Scenedesmus acutus (72-h growth inhibition LOEC) and Scenedesmus subspicatus (72-h growth inhibition NOEC), and for the mollusc Pseudosuccinea columella (12-d reproductive impairment IC7), to 1 080 000 µg/L for C. vulgaris (96-h LC50). Acute toxicity values ranged from 500 µg/L for the freshwater macrophyte, Lemna gibba (2–5 d growth rate NOEC) to 830 800 µg/L for the freshwater fish Lepomis macrochirus (96-h LC50). An assessment of the modality of the available freshwater glyphosate chronic toxicity dataset indicated that the dataset was unimodal. Hence, all acceptable chronic toxicity data were considered in the derivation of the DGVs.
Very high reliability DGVs for glyphosate in freshwater were derived based on chronic negligible effect (e.g. NOEC, EC10) data for 15 freshwater species that belonged to six phyla and eight classes, with a good (visual) fit of the species sensitivity distribution (SSD) to the toxicity data. The DGVs are expressed in terms of the active ingredient (glyphosate) rather than commercial formulations, and do not relate to any of the breakdown products of glyphosate. The available literature indicates that commercial formulations of glyphosate are more toxic than the active ingredient alone (ANZECC/ARMCANZ 2000, AATSE 2002). Therefore, the actual levels of protection provided in freshwater ecosystems for the DGVs may be lower than specified in this technical brief. The DGVs for 99, 95, 90 and 80% species protection are 180 µg/L, 320 µg/L, 460 µg/L and 760 µg/L, respectively. The 95% species protection level for glyphosate in freshwater (320 µg/L) is recommended for adoption in the assessment of slightly-to-moderately disturbed ecosystems.
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[bookmark: _Toc64624220]Introduction
Glyphosate is a herbicide (C3H8NO5P and Figure 1) that, as a free acid at room temperature, is an odourless white crystal. It is the active ingredient of a variety of commercial herbicide formulations. Glyphosate often occurs in formulations with various surfactants and adjuvants (e.g. the surfactant polyethoxylated tallow amine, which is used in a number of commercial glyphosate-based products) to increase its efficacy. Glyphosate also has various salt forms, including isopropylamine, trimesium, diphenylamine and mono-ammonium, which are also regularly used in herbicide formulations, with the isopropylamine salt being the most commonly used form (ANZECC/ARMCANZ 2000). Physico-chemical properties of glyphosate that may affect its environmental fate and toxicity are presented in Table 1.
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[bookmark: _Ref16942129][bookmark: _Toc64624301]Figure 1 Structure of glyphosate

[bookmark: _Ref16942194][bookmark: _Toc29547168][bookmark: _Toc64624303]Table 1 Summary of selected physico-chemical properties of glyphosate
	Physico-chemical property
	Value

	Molecular weight
	169.1 amu a, b

	Aqueous solubility
	10 500 mg/L at pH 1.9 and temperature of 20 oC a

	Logarithm of the octanol-water partition coefficient (log Kow)
	-3.2 a
-3.2 at pH 7 and temperature 20 oC c

	Logarithm of the organic carbon water partition coefficient (log Koc)
	4.45 b
3.15 c

	Logarithm of the bioconcentration factor (log BCF)
	0.5 c

	Half-life (t1/2) in water
	9.9 days c
Hydrolysis: stable at pH 5–8 at temperature 25 oC c
33 days (pH 5), 77 days (pH 9) c

	Half-life (t1/2) in soil
	74.5 days c


a BCPC (2012).
b CCME (2012).
c University of Hertfordshire (2013).
Glyphosate belongs to the organophosphorus group of herbicides, which also includes bensulide, fosamine and glufosinate. In Australia and New Zealand, glyphosate is extensively used either on its own or in combination with various other herbicides for control of annual and perennial grasses and broadleaf weeds in agriculture (e.g. barley, beans, citrus fruit, pastures, peas, stone fruit, vineyards), forestry, industrial, urban and other situations (e.g. national parks, bushland reserves, waterways, drains, roadsides) (ACVM 2020, APVMA 2020). It is a broad spectrum (non-selective) systemic herbicide with high activity on virtually all plants. In Australia, glyphosate has historically been the most widely used herbicide, closely followed by simazine and atrazine (AATSE 2002). It is also widely used internationally.
Glyphosate and glyphosate salts in commercial formulations are often used in conjunction with various surfactants to increase efficacy. Several different kinds of surfactants are used depending on the intended use of the product. Where a product is registered for use near waterways, relatively benign surfactants are used in the formulation. However, for those products that include label restrictions with respect to usage near waterways, the surfactants employed (i.e. polyethoxylated tallow amine (POEA)) may be largely responsible for the aquatic toxicity among non-target organisms (Mann & Bidwell 1999). Some commercial formulations have been reported to be three to 42 times more toxic than the active ingredient—glyphosate (Folmar et al. 1979). Therefore, use of less toxic formulations (e.g. Roundup Biactive®) has been encouraged for use near waterways (AATSE 2002). The extent to which commercial formulations differ in their toxicity to the active ingredient will vary depending on the other chemicals added to the formulations. If there are concerns that the glyphosate default guideline values (DGVs) may be under-protective or over-protective due to differences in overall formulation toxicity, a formulation modified DGV could be derived using the methods in Warne et al. (2018).
Glyphosate binds strongly to soil particles (Table 1) and often remains in the top layer of soil; therefore, it does not have a high capacity to leach to groundwater. It is susceptible to off-site transport bound to soil particles (Schuette 1998). It is a post-emergence knockdown herbicide as it does not retain its biological effectiveness in soil after application (Franz et al. 1997 cited in Schuette 1998). Glyphosate is readily metabolised by soil micro-organisms (AATSE 2002) that biodegrade the carbon from glyphosate to aminomethylphosphonic acid (AMPA) and glyoxylate and, ultimately, to carbon dioxide (Schuette 1998).
The previous Australian and New Zealand DGV for glyphosate in freshwater environments was a moderate reliability value (using the ANZECC/ARMCANZ 2000 reliability scheme) as it was based on acute toxicity data for 18 phototrophic and heterotrophic species (Warne 2001). Under the new method for deriving DGVs (Warne et al. 2018), the ANZECC/ARMCANZ (2000) DGV would be classified as having low reliability. More data on glyphosate chronic toxicity to freshwater species are now available, which has enabled the derivation of improved DGVs compared to the ANZECC/ARMCANZ (2000) DGVs. This technical brief provides revised DGVs for glyphosate in freshwater that supersede the ANZECC/ARMCANZ (2000) DGVs.
[bookmark: _Toc64624221]Aquatic toxicology
[bookmark: _Ref64011752][bookmark: _Toc64624222]Mechanisms of toxicity
Glyphosate is absorbed through plant foliage and stems rather than roots and is translocated in the phloem to growing points within the organism (AATSE 2002, APVMA 2014). Glyphosate acts by binding to and inhibiting the enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, which is responsible for catalysing chemical reactions within plants and algae. The binding of glyphosate to EPSP blocks the shikimate pathway and ultimately results in plant death from a lack of aromatic amino acids, such as tryptophan, phenylalanine and tyrosine (Schönbrunn et al. 2001, APVMA 2014, Myers et al. 2016) as well as lignins, alkaloids, flavonoids, benzoic acids and plant hormones (Plant and Soil Sciences eLibrary 2015). 
[bookmark: _Toc64624223]Toxicity
There is a significant body of literature on the toxicity of glyphosate to freshwater species. A literature search identified acceptable quality toxicity data for 36 freshwater species comprising 19 phototrophic species and 17 heterotrophic species (see Section 4.1 for details and associated links to supporting information). As glyphosate has a specific mode of action that targets plants and algae, it would be expected that phototrophic species would be more sensitive than heterotrophic species. An assessment of the relative sensitivity of freshwater phototrophic and heterotrophic species indicated that, although there is a general trend for phototrophic species to be more sensitive, there is a large overlap in sensitivities between the two groups (Appendix B). A summary of the toxicity of glyphosate to freshwater phototrophic species and heterotrophic species is provided below.
There did not appear to be any difference in the sensitivity of the four types of freshwater phototrophic organisms. Toxicity values for green algae ranged from 100 µg/L for the green algae Chlorella vulgaris (also called Chlorella pyrenoidosa) (72-h LOEC, growth inhibition), Scenedesmus acutus (72-h LOEC, growth inhibition) and Scenedesmus subspicatus (72-h NOEC, growth inhibition) (Vendrell et al. 2009), to approximately 1 080 000 µg/L for C. pyrenoidosa (96-hour LC50) (Anton et al. 1993). Toxicity values for blue-green algae ranged from 2 900 µg/L (21-d EC50, population growth) for Anabaena catenula to 598 400 µg/L (21-d EC50, population growth) for Nostoc punctiforme (Lipok et al. 2010). Toxicity values for macrophytes ranged from 500 µg/L (2–5-d NOEC, frond number) for Lemna gibba (Sobrero et al. 2007) to 46 900 µg/L (7-d EC50, growth rate) for Lemna minor (Cedergreen and Streibig 2005). Toxicity values for a diatom Navicula pelliculosa ranged from 1 800 µg/L (5-d NOEL, growth rate) to 38 600 µg/L (4-d EC50, growth rate) for Navicula pelliculosa (USEPA 2015b).
Toxicity values for heterotrophic species ranged from 100 to 830 800 µg/L. Fish toxicity values ranged from 10 000 µg/L (10–21-d LOEC, reproduction/mortality) for Danio rerio (Uren Webster et al. 2014) to 830 800 µg/L (96-h LC50, mortality) for Lepomis macrochirus (USEPA 2015b). Toxicity values for crustaceans ranged from 450 µg/L (36-d NOEC, growth, and 55-d NOEC, reproduction) (Cuhra et al. 2013) to 780 000 µg/L (48-h EC50, immobilisation) (USEPA 2015b), with both values being for Daphnia magna. Toxicity values for molluscs ranged from 100 µg/L (12-d IC7, reproduction) for Pseudosuccinea columella (Tate et al. 1997) to 25 000 µg/L (21-d LOEC, growth) for Lampsilis siliquoidea (Bringolf et al. 2007). Other toxicity values for heterotrophic species include a 48-h LC50 of 13 000 µg/L for the insect Chironomus plumosus (USEPA 2015b), and a 96-h LC5 and LC50 of 15 700 µg/L and 18 200 µg/L, respectively, for the cnidarian Hydra attenuata (Demetrio et al. 2012). The data suggest there might be some differences in the sensitivity of the various types of heterotrophs, but the dataset is too small to make a definitive conclusion about this.
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Factors such as temperature, pH (in formulations such as Roundup® only) and increased water hardness have been reported as modifying the toxicity of glyphosate (ANZECC/ARMCANZ 2000). However, no relationships have been developed to permit the calculation of temperature–, pH– or water hardness–specific DGVs.
Various surfactants and adjuvants used in combination with glyphosate in commercial formulations are known to significantly increase the toxicity of the herbicide to target and non-target organisms (Folmar et al. 1979). Removal of glyphosate from the water column occurs mainly by binding to sediment and suspended solids, as well as via microbial degradation. The rate of biodegradation in water bodies appears to be positively related to the concentration of suspended solids (Feng et al. 1990, Newton et al. 1994). Thus, as with many organic chemicals, it might be expected that dissolved and particulate organic matter and suspended solids would affect the bioavailability and toxicity of glyphosate.
[bookmark: _Toc64624292]Default guideline value derivation
The DGVs were derived in accordance with the method described in Warne et al. (2018) and using Burrlioz 2.0 software. Although some decisions on data selection/manipulation may reflect the Warne et al. (2015) method rather than the Warne et al. (2018) method, these were found to have no material effect on the final DGVs.
[bookmark: _Toc64624293]Toxicity data used in derivation
As with all the other pesticides that have DGVs, the DGVs for glyphosate were based on data from experiments using technical or higher grades of glyphosate or with a minimum purity of 80% active ingredient (Warne et al. 2018). Consequently, some of the data that were used to generate the ANZECC/ARMCANZ (2000) DGVs for glyphosate were omitted from the current derivation process as the toxicity tests used commercial formulations.
To obtain toxicity data for glyphosate to freshwater organisms, an extensive search of the scientific literature was conducted. In addition, the ECOTOXicology Database System (USEPA 2015a), Office of Pesticide Program database (USEPA 2015b), the Australasian Ecotoxicology Database (Warne et al. 1998) and the ANZECC/ARMCANZ (2000) toxicant databases (Sunderam et al. 2000) were searched. There are now considerably more glyphosate chronic toxicity data available, including for phototrophic species (species that photosynthesise, e.g. plants and algae), to enable the calculation of DGVs in freshwater based on chronic toxicity alone. 
In total, there were freshwater toxicity data for 36 species (eight different phyla and 13 classes) that passed the quality assessment and screening processes. The represented phyla were Arthropoda, Bacillariophyta, Chlorophyta, Chordata, Cnidaria, Cyanobacteria, Mollusca and Tracheophyta. The 13 classes were Actinopterygii (which accounts for approximately 99% of fish), Bacillariophyceae (diatoms; a major grouping of algae), Bivalvia (a grouping of molluscs), Branchiopoda (a grouping of crustaceans), Chlorophyceae (a major grouping of freshwater green algae), Cyanophyceae (a class of cyanobacteria), Gastropoda (another grouping of molluscs), Hydrozoa (a diverse group of cnidarians), Insecta (invertebrates), Liliopsida (monocots), Magnoliopsida (dicots), Malacostraca (a large grouping of crustaceans) and Trebouxiophyceae (another grouping of green algae). Chronic toxicity data were available for 26 of the 36 species, comprising 19 phototrophs and seven heterotrophs, while acute toxicity data were available for 15 species, comprising one phototroph and 14 heterotrophs.
Based on the current understanding of the mode of action of glyphosate (see Section 2.1), it is expected that phototrophic species would be more sensitive than non-phototrophic species, as the EPSP enzyme is normally found within chloroplasts of plants and algae. However, a modality assessment of the glyphosate toxicity data, undertaken according to the approach described by Warne et al. (2018), concluded that the dataset was unimodal, with no apparent difference between the sensitivity of phototrophic and non-phototrophic species (see Appendix B for details). Therefore, as recommended by Warne et al. (2018), the data for both phototrophs and heterotrophs were combined to calculate the DGVs for glyphosate in freshwater.
Of the 26 species for which there were acceptable chronic toxicity data, there were negligible effect (e.g. NOEC,EC10) data available for 15 species (that belonged to six phyla and nine classes), which met the minimum data requirements (i.e. at least five species belonging to at least four phyla) to use a species sensitivity distribution (SSD) to derive DGVs (Warne et al. 2018). For two species, Ceriodaphnia dubia and Hyalella azteca, pH values of <5 were reported for glyphosate test concentrations of ≥250 mg/L (SEC 2007). Although the toxicity of glyphosate is known to be affected by pH, the C. dubia and H. azteca data were included in the final dataset as the toxicity values (65 and 19 mg/L, respectively) were markedly lower than 250 mg/L, and it was assumed that the pH was within the acceptable range of 6 to 9 (Warne et al. 2018). Moreover, the inclusion of these data is consistent with their inclusion in the Canadian water quality guideline for glyphosate (CCME 2102).
A summary of the toxicity data (one value per species) used to calculate the DGVs for glyphosate in freshwater is provided in Table 2. Further details on the data that passed the quality assessment and screening process and were used to derive the DGVs are presented in Appendix A. Details of the data quality assessment and the data that passed the quality assessment are provided as supporting information.
To identify species that were regionally relevant to Australia and New Zealand ecosystems, a search of AlgaeBase (Guiry & Guiry 2017), Atlas of Living Australia (ALA 2017), Catalogue of Life (Roskov et al. 2017), Integrated Taxonomic Information System (ITIS 2017) and the World Register of Marine Species (WoRMS 2017) was conducted. The dataset used in the DGV derivation process for glyphosate in freshwater includes toxicity data for six freshwater species that either originated from or are distributed within Australia and/or New Zealand. There was one published study (Bidwell & Gorrie 1995) that determined the toxicity of glyphosate to two Australasian frog species. As these toxicity tests were undertaken using high concentrations of glyphosate acid with low pH (<3.0), it is more likely that mortality amongst the tadpoles was a result of low pH levels of the higher exposure concentrations rather than the glyphosate acid exposure. Tadpoles have reportedly been unaffected by high concentrations (NOEC of >340 mg/L) of other forms of glyphosate, such as glyphosate IPA (Mann & Bidwell 1999), and it is well documented that amphibian larvae are intolerant to acid environments (Freda 1986). Therefore, the amphibian toxicity data reported by Bidwell and Gorrie (1995) were not included in the derivation of the DGVs for glyphosate.
[bookmark: _Ref26612619][bookmark: _Toc29547169][bookmark: _Toc64624304]Table 2 Summary of single chronic toxicity values, all species used to derive default guideline values for glyphosate in freshwater 
	Taxonomic group (Phylum)
	Species
	Life stage
	Duration (d)
	Toxicity measure a
	Test endpoint
	Final toxicity value (µg/L)

	Blue–green alga (Cyanobacteria)
	Anabaena flosaquae
	Not stated
	5
	NOEL
	Biomass yield, growth rate, AUC b
	12 000

	Crustacean (Arthropoda)
	Ceriodaphnia dubia c
	<24-hour old
	7
	NOEC
	Survival
	65 000

	Crustacean (Arthropoda)
	Cherax quadricarinatus c
	Advanced juvenile
	50
	NOEC
	Growth
	22 500

	Green alga (Chlorophyta)
	Chlorella saccharophila
	Exponential growth phase
	3
	NOEC/EC10
	Cell density
	1 082 d

	Crustacean (Arthropoda)
	Daphnia magna
	Neonate
	21
	NOEC
	Reproduction
	450

	Amphipod (Arthropoda)
	Hyalella azteca
	Juvenile
	14
	NOEC, EC10
	Survival
	19 145 d

	Bivalve (Mollusca)
	Lampsilis siliquoidea
	Juvenile
	21
	NOEC
	Shell length
	12 500

	Macrophyte (Tracheophyta)
	Lemna gibba
	Not stated
	14
	NOEL
	Frond number, growth rate, mortality
	1 400

	Macrophyte (Tracheophyta)
	Lemna minor c
	Not stated
	7
	EC10
	Chlorophyll-a content
	3 780

	Diatom (Bacillariophyta)
	Navicula pelliculosa c
	Not stated
	5
	NOEL
	Biomass yield, growth rate, AUC b
	1 800

	Gastropod (Mollusca)
	Pseudosuccinea columella
	Embryo
	12
	NOEC, IC7
	Hatching success
	316 d

	Green alga (Chlorophyta)
	Scenedesmus acutus c
	Not stated
	4
	NOEC
	Chlorophyl a content
	2 000

	Green alga (Chlorophyta)
	Scenedesmus quadricauda
	Not stated
	4
	NOEC
	Chlorophyl a content
	770

	Green alga (Chlorophyta)
	Scenedesmus subspicatus c, f
	Exponential growth phase
	3
	NOEC, EC10
	Cell density
	400 d

	Green alga (Chlorophyta)
	Selenastrum capricornutum g
	Not stated
	5
	NOEL
	Chlorophyll-a content
	10 000


a The measure of toxicity being estimated/determined: EC10: 10% effect concentration; IC7: 7% inhibition concentration; NOEC: No observed effect concentration; NOEL: No observed effect level.
b AUC = area under the growth curve.
c Species that originated from/are distributed in Australia and/or New Zealand.
d Based on a geometric mean (see Appendix A).
e This species has also been called Scenedesmus obliquus.
f This species has also been called Desmodesmus subspicatus.
g This species has also been called Raphidocelis subcapitata and Pseudokirchneriella subcapitata.
[bookmark: _Toc64624294]Species sensitivity distribution
The SSD of the 15 freshwater glyphosate chronic toxicity values reported in Table 2 is presented in Figure 2. The SSD was plotted using the Burrlioz 2.0 software. The model was judged to provide a good fit to the data (Figure 2).
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[bookmark: _Ref16943040][bookmark: _Toc64624302]Figure 2 Species sensitivity distribution, glyphosate in freshwater
[bookmark: _Toc64624295]Default guideline values
It is important that the DGVs (Table 3) and associated information in this technical brief are used in accordance with the detailed guidance provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality website (ANZG 2018). 
The DGVs for 99%, 95%, 90% and 80% species protection are shown in Table 3. The DGVs are expressed in terms of the active ingredient (glyphosate) rather than commercial formulations, and do not relate to any of the breakdown products of glyphosate. The 95% species protection DGV of 320 µg/L glyphosate is recommended for application for slightly-to-moderately disturbed ecosystems. However, as the available literature indicates that commercial formulations containing glyphosate can be more toxic than glyphosate alone, the actual levels of protection provided by the DGVs for freshwater ecosystems may be lower than specified in Table 3. ANZG (2018; see Accounting for local conditions) provides guidance on what to do if the DGVs are under-protective due to formulation-related factors.
The DGVs are considerably lower than the ANZECC/ARMCANZ (2000) DGVs and the most recent international guideline value (at the 95% species protection level) for glyphosate (CCME 2012). The ANZECC/ARMCANZ (2000) DGV for glyphosate of 1 220 µg/L for 95% species protection was derived using acute toxicity data ranging from 100 µg/L to 641 000 µg/L, with a safety factor of 10 applied to convert it to a chronic guideline value. Thus, the ANZECC/ARMCANZ (2000) value had a high degree of uncertainty in its ability to protect against chronic effects. In Canada, the guideline value of 800 µg/L for 95% species protection was derived using chronic toxicity data ranging from 1 090 µg/L to 150 000 µg/L (CCME 2012). Notably, the chronic toxicity dataset used to derive the current DGVs contained five values that were lower than the lowest value in the Canadian dataset, three of which were published after the Canadian derivation was undertaken. Thus, given the current DGVs are based on the most up-to-date international chronic toxicity dataset, they represent the most reliable of currently available guideline values for glyphosate in freshwater.
Measured log BCF values for glyphosate are low (Table 1) and are below the threshold at which secondary poisoning must be considered (i.e. threshold log BCF = 4 (Warne et al. 2018)). Therefore, the DGVs for glyphosate do not need to account for secondary poisoning.
[bookmark: _Ref16942756][bookmark: _Toc29547170][bookmark: _Toc64624305]Table 3 Toxicant default guideline values, glyphosate in freshwater, very high reliability
	Level of species protection (%)
	DGV for glyphosate in freshwater (g/L) a

	99
	180

	95
	320

	90
	460

	80
	760


a The DGVs were derived using the Burrlioz 2.0 software. They have been rounded to two significant figures.
[bookmark: _Toc19106836][bookmark: _Toc64624296]Reliability classification 
The glyphosate freshwater DGVs have a very high reliability classification (Warne et al. 2018) based on the outcomes for the following three criteria:
Sample size—15 (preferred)
Type of toxicity data—chronic NOEC/NOEL/EC10 values
SSD model fit—good (Inverse Weibull model).


[bookmark: _Toc64624297]Glossary
	Term
	Definition

	acute toxicity
	A lethal or adverse sub-lethal effect that occurs as the result of a short exposure period to a chemical relative to the organism’s life span.

	ANZECC
	Australian and New Zealand Environment and Conservation Council

	ARMCANZ
	Agricultural and Resource Management Council of Australia and New Zealand

	bimodal
	When the distribution of the sensitivity of species to a toxicant has two modes. This typically occurs with chemicals with specific modes of action. For example, herbicides are designed to affect plants at low concentrations but most animals are only affected at high concentrations.

	CAS no. (Chemical Abstracts Service number)
	Each chemical has a unique identifying number that is allocated to it by the American Chemical Society.

	chronic toxicity
	A lethal or sublethal adverse effect that occurs after exposure to a chemical for a period of time that is a substantial portion of the organism’s life span or an adverse effect on a sensitive early life stage.

	default guideline value (DGV)
	A guideline value recommended for generic application in the absence of a more specific guideline value (e.g. a site-specific guideline value) in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Formerly known as ‘trigger values’.

	ECx
	The concentration of a substance in water or sediment that is estimated to produce an x% change in the response being measured or a certain effect in x% of the test organisms, under specified conditions.

	EC50 (median effective concentration)
	The concentration of a substance in water or sediment that is estimated to produce a 50% change in the response being measured or a certain effect in 50% of the test organisms relative to the control response, under specified conditions.

	endpoint
	The specific response of an organism that is measured in a toxicity test (e.g. mortality, growth, a particular biomarker).

	guideline value
	A measurable quantity (e.g. concentration) or condition of an indicator for a specific community value below which (or above which, in the case of stressors such as pH, dissolved oxygen and many biodiversity responses) there is considered to be a low risk of unacceptable effects occurring to that community value. Guideline values for more than one indicator should be used simultaneously in a multiple lines of evidence approach. Also refer to ‘default guideline value’ and ‘site-specific guideline value’.

	ICx
	The concentration of a substance in water or sediment that is estimated to produce an x% inhibition of the response being measured in test organisms relative to the control response, under specified conditions.

	LC50 (median lethal concentration)
	The concentration of a substance in water or sediment that is estimated to be lethal to 50% of a group of test organisms, relative to the control response, under specified conditions.

	LCx 
	The concentration of a substance in water or sediment that is estimated to be lethal to x% of a group of test organisms, relative to the control response, under specified conditions.

	lowest observed effect concentration (LOEC)
or
lowest observed effect level (LOEL)
	The lowest concentration of a material used in a toxicity test that has a statistically significant adverse effect on the exposed population of test organisms as compared with the controls. Also sometimes referred to as a lowest observed effect level (LOEL).

	no observed effect concentration (NOEC)
or
no observed effect level (NOEL)
	The highest concentration of a material used in a toxicity test that has no statistically significant adverse effect on the exposed population of test organisms as compared with the controls. Also sometimes referred to as a no observed effect level (NOEL).

	Phototrophs
	Organisms that photosynthesize as their main means of obtaining energy, for example plants and algae.

	site-specific guideline value
	A guideline value that is relevant to the specific location or conditions that are the focus of a given assessment or issue.

	Species (biological)
	A group of organisms that resemble each other to a greater degree than members of other groups and that form a reproductively isolated group that will not produce viable offspring if bred with members of another group.

	species sensitivity distribution (SSD) 
	A method that plots the cumulative frequency of species’ sensitivities to a toxicant and fits a statistical distribution to the data. From the distribution, the concentration that should theoretically protect a selected percentage of species can be determined.

	toxicity
	The inherent potential or capacity of a material to cause adverse effects in a living organism.

	toxicity test
	The means by which the toxicity of a chemical or other test material is determined. A toxicity test is used to measure the degree of response produced by exposure to a specific level of stimulus (or concentration of chemical) for a specified test period. 
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[bookmark: _Ref16942625][bookmark: _Ref16942906][bookmark: _Toc64624298]Appendix A: Toxicity data that passed the screening and quality assessment and were used to derive the default guideline values
[bookmark: _Ref16942648][bookmark: _Ref6322511][bookmark: _Toc32491888]Table A 1 Summary, chronic toxicity data that passed the screening and quality assurance processes, glyphosate in freshwater
	Taxonomic group (Phylum)
	Species
	Life stage
	Exposure duration (d)
	Toxicity measure a (test endpoint)
	Test medium
	Temperature (C)
	pH
	Concentration (µg/L)
	Reference

	Crustacean
(Arthropoda)
	Ceriodaphnia dubia
	<24-hour old
	7
	NOEC
(Survival)
	Dilution water
	24–25 
	4.7–8.2
	65 000
	SEC (2007)

	–
	65 000
	VALUE USED IN SSD

	Crustacean
(Arthropoda)
	Cherax quadricarinatus
	Advanced juvenile
	50
	NOEC
(Growth)
	Dechlorinated filtered tap water
	27 ± 1
	8.0 ± 0.5
	22 500
	Frontera et al. (2011)

	–
	22 500
	VALUE USED IN SSD

	Crustacean
(Arthropoda)
	Daphnia magna
	Neonates
	55
	NOEC
(Fecundity)
	Aachener Daphnien Medium (adam)
	27 ± 2
	7.5 ± 0.7
	450
	Cuhra et al. (2013)

	–
	450
	VALUE USED IN SSD 

	Crustacean
(Arthropoda
	Hyalella azteca
	Juvenile
	14
	EC10
(Survival)
	Dilution water
	22–23 
	3.5–7.9
	53 900
	SEC (2007)

	
	
	Juvenile
	14
	NOEC
(Survival)
	Dilution water
	22–23 
	3.5–7.9
	6 800
	SEC (2007)

	–
	19 145
	VALUE USED IN SSD (GEOMTERIC MEAN)

	Diatom
(Bacillariophyta)
	Navicula pelliculosa
	Not stated
	5
	NOEL 
(Biomass, growth rate, AUC b)
	ASTM Type I water
	24 ± 2
	7.5 ± 0.1
	1 800
	USEPA (2015b)

	–
	1 800
	VALUE USED IN SSD

	Green alga
(Chlorophyta)
	Chlorella saccharophila
	Exponential growth phase
	3
	NOEC
(Cell density)
	ASTM medium
	24 ± 2
	Not stated
	390
	Vendrell et al. (2009)

	
	
	Exponential growth phase
	3
	EC10
(Cell density)
	ASTM medium
	24 ± 2
	Not stated
	3 000
	Vendrell et al. (2009)

	–
	1 082
	VALUE USED IN SSD (GEOMETRIC MEAN)

	Green alga
(Chlorophyta)
	Selenastrum capricornutum a
	Not stated
	5
	NOEL 
(Biomass, growth rate, AUC b)
	ASTM Type I water
	24 ± 2
	7.5 ± 0.1
	10 000
	USEPA (2015b)

	–
	10 000
	VALUE USED IN SSD 

	Green alga
(Chlorophyta)
	Scenedesmus acutus c
	Not stated
	4
	NOEC 
(Chlorophyl a content)
	Modified Detmer’s nutrient medium
	22 ± 2
	7.5
	2 000
	Saenz et al. (1997)

	–
	2 000
	VALUE USED IN SSD 

	Green alga
(Chlorophyta)
	Scenedesmus quadricauda
	Not stated
	4
	NOEC 
(Chlorophyl a content)
	Modified Detmer’s nutrient medium
	22 ± 2
	7.5
	770
	Saenz et al. (1997)

	–
	770
	VALUE USED IN SSD 

	Green alga
(Chlorophyta)
	Scenedesmus subspicatus d
	Exponential growth phase
	3
	NOEC
(Cell density)
	ASTM medium
	24 ± 2
	Not stated
	100
	Vendrell et al. (2009)

	
	
	Exponential growth phase
	3
	EC10
(Cell density)
	ASTM medium
	24 ± 2
	Not stated
	1 600
	Vendrell et al. (2009)

	–
	400
	VALUE USED IN SSD (GEOMETRIC MEAN)

	Blue–green alga
(Cyanobacteria)
	Anabaena flosaquae
	Not stated
	5
	NOEL 
(Biomass, growth rate, AUC b)
	ASTM Type I water
	24 ± 2
	7.5 ± 0.1
	12 000
	USEPA (2015b)

	–
	12 000
	VALUE USED IN SSD

	Bivalve
(Mollusca)
	Lampsilis siliquoidea
	Juvenile
	21
	NOEC 
(Growth)
	Reconstituted hard water
	21.1 ± 0.7
	8.22–8.76
	12 500
	Bringolf et al. (2007)

	–
	12 500
	VALUE USED IN SSD

	Gastropod
(Mollusca)
	Pseudosuccinea columella
	Embryo
	12
	NOEC 
(Hatching success)
	Artificial spring water
	25 ± 2
	6.5–8.5
	1 000
	Tate et al. (1997)

	
	
	Embryo
	12
	IC7
(Hatching success)
	Artificial spring water
	25 ± 2
	6.5–8.5
	100
	Tate et al. (1997)

	–
	316
	VALUE USED IN SSD (GEOMETRIC MEAN)

	Macrophyte 
(Tracheophyta)
	Lemna gibba
	Not stated
	14
	NOEL 
(Frond number, growth rate, mortality)
	M-Hoagland’s/20X-AAP nutrient media/ASTM Type I
	25 ±2
	4.8–5.2 / 7.5 ± 0.1
	1 400
	USEPA (2015b)

	–
	1 400
	VALUE USED IN SSD

	Macrophyte
(Tracheophyta)
	Lemna minor
	Not stated
	7
	EC10
(Chlorophyll-a)
	K' medium
	24
	5
	3 780
	Cedergreen and Streibig (2005)

	–
	3 780
	VALUE USED IN SSD


a This species has also been called Raphidocelis subcapitata and Pseudokirchneriella subcapitata.
b AUC = area under the growth curve.
c This species has also been called Scenedesmus obliquus.
d This species has also been called Desmodesmus subspicatus.
Note: Table strictly excludes data that originated from the use of formulations (e.g. Roundup).
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[bookmark: _Ref528068950][bookmark: _Toc4498838][bookmark: _Ref16942957][bookmark: _Toc64624299]Appendix B: Modality assessment for glyphosate toxicity to freshwater species
A modality assessment was undertaken for glyphosate according to the weight of evidence approach specified in Warne et al. (2018). 
Is there a specific mode of action that could result in taxa-specific sensitivity?
Glyphosate acts by binding to and inhibiting the enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, which blocks the shikimate pathway and ultimately results in plant death from a lack of aromatic amino acids, such as tryptophan, phenylalanine and tyrosine (Schönbrunn et al. 2001, APVMA 2014, Myers et al. 2016) as well as lignins, alkaloids, flavonoids, benzoic acids and plant hormones (Plant and Soil Sciences eLibrary 2015). The shikimate pathway is present in bacteria, archaea, fungi, algae, some protozoans, and plants—but not in animals. Therefore, it might be expected that plants and micro-organisms are more sensitive to glyphosate than animals.
Does the dataset suggest bimodality?
Modality was assessed using a freshwater toxicity dataset for which all data had passed the quality assessment and screening processes (n = 36). All data that were not chronic negligible effect values (e.g. EC10, NOEC) were first converted to this type of data using the methods recommended by Warne et al. (2018). Calculation of the bimodality coefficient (BC) on log-transformed data yielded a value of 0.46, which, being below the indicative threshold BC for bimodality of 0.55, suggested the dataset does not exhibit bimodality. Additionally, a frequency histogram of the data suggested that the distribution of toxicity data was unimodal (Figure B 1).
[image: ]
[bookmark: _Ref26614177][bookmark: _Toc18411717][bookmark: _Toc64624308]Figure B 1 Frequency histogram, log-transformed glyphosate ecotoxicity data, freshwater species
Do data show taxa-specific sensitivity (i.e. through distinct groupings of different taxa types)? 
The relative sensitivity of different taxa groups to glyphosate was compared using box and whisker plots (Figure B 2) and a species sensitivity distribution (plotted using the Burrlioz 2.0 software) (Figure B 3). Although these graphical analyses indicate a general trend for phototrophs to be more sensitive than heterotrophs (as would be expected given the mode of action), there is almost a complete overlap in the toxicity values of phototrophs and heterotrophs, indicating that there is no clear separation between these groups.
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[bookmark: _Ref26614191][bookmark: _Toc18411718][bookmark: _Toc64624309]Figure B 2 Box and whisker plots, glyphosate toxicity, freshwater phototrophs and heterotrophs
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[bookmark: _Ref26614201][bookmark: _Toc18411719][bookmark: _Toc64624310]Figure B 3 Species sensitivity distribution, glyphosate toxicity, freshwater phototrophs and heterotrophs
Is it likely that indications of bimodality or multimodality or distinct clustering of taxa groups are not due to artefacts of data selection, small sample size, test procedures, or other reasons unrelated to a specific mode of action?
Given that the sample sizes are quite high for both phototrophs (n = 19) and heterotrophs (n = 17), it is likely that the distributions are representative, although a bias cannot be ruled out. The factors in the weight of evidence were: a potentially specific mode of action; a bimodality coefficient that indicated the dataset was likely to be bimodal; and three graphical analyses that indicated the distribution of toxicity data is unimodal despite a general trend for phototrophs to be more sensitive than heterotrophs. Overall, the information indicated that the toxicity of glyphosate to freshwater species exhibits a unimodal relationship; therefore, all the available toxicity data were used in the DGV derivation.


[bookmark: _Toc4498839][bookmark: _Toc64624300]References
AATSE 2002. Pesticide use in Australia. A review undertaken by the Australian Academy of Technological Sciences and Engineering. Australian Academy of Technological Sciences and Engineering, Parkville, Victoria, Australia, 309.
ACVM 2020. Agricultural Compounds and Veterinary Medicines (ACVM) register. Minister for Primary Industries, New Zealand. Accessed 14 January 2020.
ALA 2017. Atlas of Living Australia. Developed by the National Research Infrastructure for Australia (NCRIS) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO). Accessed May 2017.
Anton, FA, Ariz, M, & Alia, M 1993. Ecotoxic effects of four herbicides (glyphosate, alachlor, chlortoluron and isoproturon) on the algae Chlorella pyrenoidosa Chick. Science of the Total Environment, 134, 845–851.
ANZECC/ARMCANZ 2000. Australian and New Zealand Guidelines for fresh and marine water quality/aquatic ecosystems: Rationale and background information (Chapter 8). Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, Australia, 678.
ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra, ACT, Australia. 
APVMA 2014. Glyphosate. Australian Pesticide and Veterinary Medicine Authority. Last updated 1 July 2014. Accessed 27 June 2016.
APVMA 2020. Agricultural and Veterinary Permits Search. Australian Pesticide and Veterinary Medicine Authority. Accessed 14 January 2020.
BCPC 2012. A world compendium. The Pesticide Manual. Sixteenth Edition. C MacBean (Ed). British Crop Production Council, Alton, United Kingdom, 586–591.
Bidwell, JR & Gorrie, JR 1995. Acute toxicity of a herbicide to selected frog species. Final Report. Technical Series 79. Department of Environmental Protection, Perth, Western Australia. 
Bringolf, RB, Cope, WG, Mosher, S, Barnhart, MC & Shea, D 2007. Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of Lampsilis siliquoidea (Unionidae). Environmental Toxicology and Chemistry, 26(10), 2094–2100.
CCME 2012. Canadian water quality guidelines for the protection of aquatic life: Glyphosate. In: Canadian environmental quality guidelines, Canadian Council of Ministers of the Environment, Winnipeg. 
Cedergreen, N & Streibig, JC 2005. The toxicity of herbicides to non-target aquatic plants and algae: Assessment of predictive factors and hazard. Pesticide Management Science, 61(12), 1152–1160.
Cuhra, M, Traavik, T & Bohn, T 2013. Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology, 22, 251–262.
Demetrio, PM, Bulus Rossini, GD, Bonetto, CA & Ronco, AE 2012. Effects of pesticide formulations and active ingredients on the coelenterate Hydra attenuata (Pallas, 1766). Bulletin of Environmental Contamination and Toxicology, 88, 15–19.
Feng, JC, Thompson, DG & Reynolds, PE 1990. Fate of glyphosate in a Canadian forest watershed. 1. Aquatic residues and off target deposit assessment. Journal of Agriculture Food Chemistry, 38, 1110–1118. 
Folmar, LC, Sanders, HO & Julin, AM 1979. Toxicity of the herbicides glyphosate and several of its formulations to fish and aquatic invertebrates. Archives of Environmental Contamination and Toxicology, 8, 269–278.
Freda, J 1986. The influence of acidic pond water on amphibians: a review. Water, Air and Soil Pollution, 30, 439–450.
Frontera, JL, Vatnick, I, Chaulet, A & Rodriguez, EM 2011. Effects of glyphosate and polyoxyethylenamine on growth and energetic reserves in the freshwater crayfish Cherax quadricarinatus (Decapoda, Parastacidae). Archives of Environmental Contamination and Toxicology, 61(4), 590–598.
Guiry, MD & Guiry, GM 2017. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed May 2017. 
ITIS 2017. Integrated Taxonomic Information System. Accessed May 2017. 
Lipok, J, Studnik, H, & Gruyaert, S 2010. The toxicity of Roundup 360 SL formulation and its main constituents: Glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicology and Environmental Safety, 73, 1681–1688.
Mann, RM & Bidwell, JR 1999. The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Archives of Environmental Contamination and Toxicology, 36, 193–199.
Myers, JP, Antoniou, MN, Blumberg, B, Carroll, L, Colborn, T, Everett, LG, Hansen, M, Landrigan, PJ, Lanphear, BP, Mesnage, R, Vandenberg, LN, vom Saal, FS, Welshons, WV & Benbrrok, CM 2016. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environmental Health, 15:19. DOI 10.1186/s12940-016-0117-0.
Newton, M, Homer, LM, Cowell, JE, White, DE & Cole, EC 1994. Dissipation of glyphosate and aminomethylphosphonic acid in North American forests. Journal of Agriculture Food Chemistry, 42, 1795–1802.
Plant and Soil Sciences eLibrary 2015. Inhibitors of aromatic amino acid biosynthesis. Accessed 15 September 2015.
Roskov, Y, Abucay, L, Orrell, T, Nicolson, D, Bailly, N, Kirk, PM, Bourgoin, T, DeWalt, RE, Decock, W, De Wever, A, Nieukerken, E, Zarucchi, J & Penev, L (eds.) 2017. Species 2000 & ITIS Catalogue of Life, 30th April 2017. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858. Accessed May 2017.
Saenz, ME, Di Marzio, WD, Alberdi, JL & del Carmen Tortorelli, M 1997. Effects of technical grade and a commercial formulation of glyphosate on algal population growth. Environmental Contamination and Toxicology, 59, 638–644.
Schönbrunn, E, Eschenburg, S, Shuttleworth, WA, Schloss, JV, Amrheim, N, Evans, JNS & Kabsch, W 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proceedings National Academy of Sciences of the United States of America, 98(4), 1376–1380.
Schuette, J 1998. Environmental fate of glyphosate. Department of Pesticide Regulation, Environmental Monitoring and Pesticide Management, Sacramento, California, CA 95824-5624. 
SEC (Summit Environmental Consultants) 2007. Toxicity of glyphosate and thiram to aquatic invertebrates, Final Report 551-04.01, Prepared for Environment Canada, Summit Environmental Consultants, British Columbia.
Sobrero, MC, Rimoldi, F & Ronco, AE 2007. Effects of the glyphosate active ingredient and a formulation on Lemna gibba L. at different exposure levels and assessment end-points. Bulletin of Environmental Contamination and Toxicology, 79, 537–543.
Sunderam, RIM, Warne, MStJ, Chapman, JC, Pablo, F, Hawkins, J, Rose, RM & Patra, RW 2000. The ANZECC and ARMCANZ water quality guideline database for toxicants. Supplied as part of a CD-ROM in the ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
Tate, TM, Spurlock, JO & Christian, FA 1997. Effect of glyphosate on the development of Pseudosuccinea columella snails. Archives of Environmental Contamination and Toxicology, 33(3), 286–289.
University of Hertfordshire 2013. The Pesticide Properties Data Base (PPDB). Developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire, 2006–2013. Accessed May 2015.
Uren Webster, TM, Laing, LV, Florance, H & Santos, EM 2014. Effects of glyphosate and its formulation, Roundup, on reproduction in zebrafish (Danio rerio). Environmental Science and Technology, 48, 1271–1279.
USEPA 2015a. ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. United States Environmental Protection Agency. Accessed May–September 2015.
USEPA 2015b. Office of Pesticide Programs Database. United States Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances. Office of Pesticide Programs. Washington, D.C. January 23, 2004. Available from: https://ecotox.ipmcenters.org, Accessed May–September 2016.
Vendrell, E, Ferraz, DGB, Sabater, C & Carrasco, JM 2009. Effect of glyphosate on growth of four freshwater species of phytoplankton: A microplate bioassay. Bulletin of Environmental Contamination and Toxicology, 82(5), 538–542.
Warne MStJ, Batley GE, van Dam RA, Chapman JC, Fox DR, Hickey CW and Stauber JL 2015. Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants – update of the 2014 version. Prepared for the revision of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Department of Science, Information Technology, Innovation and the Arts, Brisbane, Queensland, 41 pp.
Warne MStJ, Batley GE, van Dam RA, Chapman JC, Fox DR, Hickey CW & Stauber JL 2018. Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants – update of 2015 version. Prepared for the revision of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra, 48 pp.
Warne, MStJ 2001. Description of how each toxicant trigger value was derived. CD-ROM in the ANZECC and ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Canberra, Australia.
Warne, MStJ, Westbury, A-M & Sunderam, R 1998. A compilation of toxicity data for chemicals to Australasian aquatic species. Part 1: Pesticides. Australasian Journal of Ecotoxicology, 4, 93–144.
WoRMS Editorial Board 2017. World Register of Marine Species. VLIZ. doi:10.14284/170. Accessed May 2017. 
image1.png




image2.jpg
.l ." 4 w
NewZealand Government «L‘L,b ORIA @

Government (GOVERNMENT OF
WESTERN AUSTRALIA

\aY4
ST S @)aca
.. GOVERNMENT ot T Government

of South Australia

Government




image4.png
o
HO_]
HO”" “CH,NHCH,CO,H




image5.emf



Glyphosate concentration (micrograms per litre)



P
er



ce
nt



ag
e 



of
 s



pe
ci



es
 p



ot
en



tia
lly



 a
ffe



ct
ed



Mollusc



Green alga



Crustacean



Green alga



Green alga



Macrophyte



Diatom



Green alga



Macrophyte



Green alga



Cyanobacterium



Bivalve



Crustacean



Crustacean



Crustacean



0
20



40
60



80
10



0



100 1000 10000 1e+05










Glyphosate concentration (micrograms per litre)

P

e

r

c

e

n

t

a

g

e

 

o

f

 

s

p

e

c

i

e

s

 

p

o

t

e

n

t

i

a

l

l

y

 

a

f

f

e

c

t

e

d

Mollusc

Green alga

Crustacean

Green alga

Green alga

Macrophyte

Diatom

Green alga

Macrophyte

Green alga

Cyanobacterium

Bivalve

Crustacean

Crustacean

Crustacean

0

2

0

4

0

6

0

8

0

1

0

0

100 1000 10000 1e+05


image6.emf



Logarithm (base 10) toxicity










Logarithm (base 10) toxicity


image7.png
M Phototroph M Heterotroph

LS n®mn N,y oy O
< o 'l — o

AydIx0y
(0T @seq) wyyeso]

Organism type




image8.png
Percentage of species potentially affected

100

80

60

40

20

o0 Phototroph
+ Heterotroph

TTTTTIT T T T TTTTIT T T T T
1000 10000 1e+05

Glyphosate concentration (micrograms per litre)




image3.jpeg
Australian & New Zealand

0
v " 354w GUIDELINES FOR
o An Australian Government Initiative 9 FRESH & MARINE

WATER QUALITY

Water Quality Guidelines is a joint initiative of the Australian and New Zealand governments,
in partnership with the Australian states and territories.





