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Summary 
The default guideline values (DGVs) and associated information in this technical brief should be used 

in accordance with the detailed guidance provided in the Australian and New Zealand Guidelines for 

Fresh and Marine Water Quality website (www.waterquality.gov.au/anz-guidelines). 

Simazine (6-chloro-N2,N4-diethyl-1,3,5-triazine-2,4-diamine, CAS no. 122-34-9) is a selective, 

systemic triazine herbicide or, more specifically, a chlorotriazine herbicide. Other chlorotriazine 

herbicides include atrazine, propazine and terbuthylazine. Simazine is a photosynthesis-inhibiting 

herbicide commonly used to control a large variety of weeds in agriculture (for specific cropping and 

non-cropping purposes), forestry and a range of urban and industrial settings (ACVM 2020; APVMA 

2020). 

The previous DGV for simazine in marine water was a low reliability value (using ANZECC/ARMCANZ 

(2000)) and was adopted from the freshwater DGV, which was based on acute toxicity data for 

12 phototrophs and heterotrophs from four taxonomic groups (i.e. fish, crustaceans, insects and 

algae) (Warne 2001). More data on simazine toxicity to marine species are now available, enabling 

the calculation of more reliable DGVs. 

Simazine has a specific mode of action (inhibition of the photosystem II pathway) and a non-specific 

mode of action (formation of reactive oxygen species) and can exert biochemical effects such as 

endocrine disruption in other non-target organisms. Because of its specific mode of action, low 

simazine concentrations should be more toxic to phototrophs than heterotrophs. However, the 

various lines of evidence (Appendix B) indicate no difference in the sensitivity of phototrophs and 

heterotrophs; therefore, the DGVs were derived using toxicity data for both phototrophs and 

heterotrophs. The lowest reported chronic toxicity value to marine species is 37.5 µg/L (microalga, 

72-h NEC/EC10) and the lowest reported acute toxicity value to marine species is 1 000 µg/L (fish, 96-

h LOEL). 

Moderate reliability DGVs for simazine in marine water were derived based on chronic, chronic 

estimated and converted acute negligible effect data (i.e. chronic 10% effect concentration (EC10), 

chronic 10% inhibition concentration (IC10), chronic no effect concentration (NEC), chronic no 

observed effect level (NOEL)) and acute 50% lethal concentration (LC50) converted to chronic EC10 

or NOEL) for 14 species from seven phyla, with a good fit of the species sensitivity distribution to the 

toxicity data. The DGVs apply to the active ingredient (simazine) rather than commercial 

formulations. The DGVs for 99%, 95%, 90% and 80% species protection are 15 µg/L, 30 µg/L, 47 µg/L 

and 84 µg/L, respectively. The 95% species protection DGV is recommended for application to 

slightly-to-moderately disturbed ecosystems. 
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1 Introduction 
Simazine is a triazine herbicide (C7H12ClN5) (Figure 1). It is the active ingredient of a variety of 

commercial herbicide formulations. Simazine is often mixed with other herbicides (e.g. ametryn, 

atrazine, diuron, metolachlor and paraquat) to increase its efficacy. Physico-chemical properties of 

simazine that may affect its environmental fate and toxicity are presented in Table 1. 

 

Figure 1 Structure of simazine 

Table 1 Summary, selected physico-chemical properties of simazine 

Physico-chemical property Value 

Molecular weight 201.7 amu a 

Aqueous solubility 
6.2 mg/L at pH 7 and 22°C a 

5 mg/L at 20°C b 

Logarithm of the octanol-water partition 
coefficient (log Kow) 

2.1 a 

2.3 at pH 7 20°C b 

Logarithm of the organic carbon water partition 
coefficient (log Koc) 

2.20 a 

2.14 at 25°C b 

Logarithm of the bioconcentration factor (log BCF) 
2.34 b 

<2.0 c 

Half-life in water (t1/2) 
Freshwater: 8.8 d at pH 1, 96 d at pH 5, 3.7 d at pH 13 a 

Marine: 29 d (light), 49 d (dark)at 20°C) d, 96 d at pH 7 and 20°C b 

Half-life in soils (t1/2) 90 d (measured in the field) b 

a BCPC (2012).  

b University of Hertfordshire (2013).  

c CCME (1999).  

d Navarro et al. (2004). 

Simazine belongs to the chlorotriazine group within the triazine herbicides, which also include 

atrazine, propazine and terbuthylazine. Simazine is a pre-emergent herbicide and is used as both a 

knockdown and residual herbicide. In Australia and New Zealand, simazine is approved for weed 

control in agriculture (e.g. apples, asparagus, berries, broad beans, chick peas, citrus, grapes, lucerne, 

pears and wheat), forestry, and a range of urban and industrial uses (e.g. weed control around 

buildings, drains, roadsides, footpaths and other commercial and public land) (ACVM 2020; APVMA 

2020).  

Simazine has poor-to-moderate soil binding characteristics due to its low log Koc value (Table 1). 

Although simazine is used in terrestrial applications, its presence in marine habitats demonstrates its 
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mobility and long half-life in aquatic marine environments (Table 1). Simazine has been detected 

frequently in Australian estuarine, coastal and marine ecosystems, including the Great Barrier Reef 

(Shaw and Müller 2005), seagrass communities in Hervey Bay (McMahon et al. 2005), and mangrove 

forest in the Mackay Whitsundays (Duke et al. 2005). Following a withdrawal of authorisations of 

plant protection products containing simazine in Europe in 2003 (EU Commission Regulation 2010), 

simazine was still detectable in marine ecosystems almost a decade later, although well below the 

levels from one to two decades earlier (Mai et al. 2013). Due to its widespread detection and its 

broad range of adverse effects, simazine has been included in the EU Priority Pollutants List and the 

equivalent United States Environmental Protection Agency (USEPA) list (Stara et al. 2012). 

2 Aquatic toxicology 
2.1 Mechanism of toxicity 

Simazine is mainly absorbed through the roots of plants and transported to the leaves, where it 

exerts its toxicity. Simazine exerts its toxicity in aquatic plants (including macrophytes and algae) by 

inhibiting electron transport in the photosystem II (PSII) complex (University of Hertfordshire 2013), a 

key process in photosynthesis that occurs in the thylakoid membranes of chloroplasts. 

Photosynthesis-inhibiting herbicides bind to the plastoquinone B protein binding site on the D1 

protein in PSII. This prevents the transport of electrons to synthesise adenosine triphosphate (used 

for cellular metabolism) and nicotinamide adenine dinucleotide phosphate (used in converting CO2 to 

glucose), therefore preventing CO2 fixation (Wilson et al. 2000). 

In addition to its main mechanism of toxicity, exposure to PSII-inhibiting herbicides can increase the 

formation of reactive oxygen species (ROS), including the singlet oxygen (1O2), superoxide (O2
–) and 

hydrogen peroxide (H2O2) (Halliwell 1991). ROS are highly reactive forms of oxygen that readily react 

with, and bind to, biomolecules, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). 

ROS are created during normal cellular functions, particularly in biochemical processes that involve 

the generation of energy (e.g. photosynthesis in chloroplasts; Krebs cycle in mitochondria), and are 

involved in a number of cellular processes (Chen et al. 2012). In phototrophs, ROS are formed when 

the absorbed light energy exceeds the ability to convert CO2 to organic molecules, thus accumulating 

oxygen (Chen et al. 2012). Prolonged exposure to elevated concentrations of ROS in plants, 

generated by biotic (e.g. disease) and/or abiotic (e.g. PSII-inhibiting herbicides) stressors, can cause 

irreversible cell damage and ultimately lead to cell death (apoptosis). 

While simazine predominantly targets the PSII complex, it can also exert biochemical effects 

(including endocrine disrupting effects) in non-target organisms (Depledge and Billinghurst 1999; 

Mnif et al. 2011; Bergman et al. 2013). For example, concentrations of 1–2 µg/L can inhibit the 

endocrine-mediated olfactory response of male Atlantic salmon (Salmo salar L.) to the female 

priming pheromone prostaglandin (Moore and Lower 2001). 

2.2 Relative toxicity 

There were toxicity data for 15 marine species that passed the screening and quality assessment 

processes. These consisted of 10 phototrophs and five heterotrophs. The phototrophs consisted of 
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three diatoms, three green algae, one cryptomonad, two golden-brown microalgae and a 

dinoflagellate. The heterotrophs consisted of three crustaceans and a mollusc (bivalve). The sparse 

availability of simazine toxicity to marine species data limits the ability to compare its relative toxicity 

among different organism types. Generally, heterotrophs were less sensitive than phototrophs, 

although there was overlap in the datasets, with two marine heterotroph sensitivities within the 

range of phototroph sensitivities (Appendix B). 

There did not appear to be any difference in the sensitivities of the five types of marine phototrophs 

as their ranges of toxicity values overlap, as follows.  

• Diatom toxicity values ranged from 100 µg/L for Phaeodactylum tricornutum (Osborn and Hook 
2013) to 250 µg/L for Skeletonema costatum (USEPA 2015).  

• Green algae toxicity values ranged from 37.5 µg/L for Tetraselmis sp. (Negri et al. 2020) to 
5 000 µg/L for Dunaliella tertiolecta (USEPA 2015). 

• Golden-brown algae toxicity values ranged from 60.2 µg/L for Tisochrysis lutea (Negri et al. 2020) 
to 500 µg/L for Isochrysis galbana (USEPA 2015). 

• Cryptomonad toxicity values ranged from 38.4 µg/L to 184 µg/L for Rhodomonas salina (Negri et 
al. 2020). 

• Dinoflagellate toxicity values ranged from 257 µg/L to 387 µg/L for Cladocopium goreaui (Negri 
et al. 2020). 

The heterotrophs had toxicity values ranging from 1 000 µg/L to 1 000 000µg/L.  

• Fish toxicity values ranged from 1 000 µg/L for Morone saxatilis (USEPA 2015) to 4 300 µg/L for 
Cyprinodon variegatus (USEPA 2015). 

• Mollusc toxicity values ranged from 1 000 µg/L to 3 700 µg/L for Crassostrea virginica (USEPA 
2015).  

• Crustaceans appeared less sensitive than the other heterotrophs, having toxicity values that 
ranged from 75 000 µg/L for Penaeus duorarum (USEPA 2015) to 1 000 000 µg/L for Neopanope 
texana (USEPA 2015).  

Although behavioural and biochemical effects of simazine on heterotrophs have been reported at 

very low concentrations (e.g. Moore and Lower 2001; Section 2.1), the ecological relevance of these 

endpoints is unclear. Consequently, such data were not used to derive the DGVs (as per Warne et al. 

2018). 

3 Factors affecting toxicity 
As with many organic chemicals, it might be expected that dissolved and particulate organic matter 

and suspended solids would affect simazine bioavailability and toxicity. However, any such effect 

would be relatively minor given the relatively low log Koc value of simazine. As noted in Section 2.1, 

one of the modes of action of simazine is to increase the formation of ROS. Given that the formation 

of ROS depends on the presence of light, it is plausible that increased turbidity (e.g. from suspended 

solids) could decrease simazine toxicity. However, there appear to be no available published data on 

this potential toxicity modifying factor for simazine. The information on this potential toxicity 

modifying factor for other PSII herbicides is contradictory. Knauer et al. (2016) concluded that the 
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presence of suspended solids did not significantly decrease the toxicity of a range of pesticides, 

including atrazine (a PSII herbicide) to freshwater species. In contrast, Wilkinson et al. (2017) found 

that decreased light intensity had a significant antagonistic effect on the toxicity of diuron (another 

PSII herbicide) to the seagrass Halophila ovalis. 

4 Default guideline value derivation 
The DGVs were derived in accordance with the method described in Warne et al. (2018) and using 

Burrlioz 2.0 software. 

4.1 Toxicity data used in derivation 

Scientific literature was searched to obtain data for simazine toxicity to marine organisms. In 

addition, the following databases were searched: ECOTOX Knowledgebase (USEPA 2015); 

Australasian Ecotoxicology Database (Warne et al. 1998); and ANZECC/ARMCANZ (2000) and 

Sunderam et al. (2000) toxicant databases. Compared to when the ANZECC/ARMCANZ (2000) 

simazine DGVs were derived, there are now more simazine toxicity data available (Appendix A). 

However, chronic toxicity data are still limited (i.e. n = 11). To derive higher reliability DGVs in the 

future, more chronic simazine toxicity tests with marine phototrophs and heterotrophs should be 

conducted. Despite this, the overall marine (acute and chronic) toxicity dataset exceeded the 

minimum data requirements to derive DGVs, and freshwater toxicity data were not required to 

supplement the marine dataset. 

There were toxicity data (acute and chronic) for 14 marine species (10 phototrophs and 

four heterotrophs representing seven phyla and 11 classes) that passed the screening and quality 

assessment processes. The represented phyla were Arthropoda, Bacillariophyta, Chlorophyta, 

Cryptophyta, Dinoflagellata, Haptophyta and Mollusca. The 11 classes were Bacillariophyceae 

(diatoms; major group of algae), Bivalvia (group of molluscs), Chlorophyceae (major group of green 

microalgae), Chlorodendrophyceae (major group of chlorophyta), Coccolithophyceae (class of yellow 

algae), Cryptophyceae (group of algae commonly known as cryptomonads), Dinophyceae (class of 

dinoflagellates), Malacostraca (larger group of crustaceans), Mediophyceae (algae group), 

Prymnesiophyceae (group of haptophytes) and Chlorodendrophyceae (group of green microalgae). 

The dataset consisted of chronic toxicity data for 11 species (10 phototrophs and one heterotroph) 

and acute toxicity data for three species (heterotrophs). 

Normally, species classified only to genus (e.g. Chlorococcum sp.) are not used in the DGV derivation, 

as ambiguity at the genus level could result in more than one toxicity value being assigned to a single 

species. However, visual identification and classification of species within a genus, particularly for 

microalgae, can be difficult for some genera due to their lack of characteristic morphological features 

(Kessler and Huss 1992). When there are no other data for species belonging to the same genus (i.e. 

there is no chance of duplicating a species) and/or when there are limited toxicity data available, 

genus level data can be included in the DGV derivation. Data for the green algae Chlorococcum sp. 

and Tetraselmis sp. were considered acceptable for inclusion in the final toxicity dataset as no other 

toxicity data for either genus were available. Additionally, there were two acute LC50 values 
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reported as ‘greater than’ (>) values that were considered acceptable. Warne et al. (2018) state that 

> toxicity values can be used provided that: 

• there are no available normal (not > or <) values for the same combination of species, measure 
and endpoint 

• they are used as is (e.g. > 50 µg/L would be changed to 50 µg/L in all subsequent calculations).  

As there were no other available toxicity data for Neopanope texana and Palaemonetes kadiakensis, 

their > LC50 values were included in the final dataset. Such data are deemed acceptable for use 

because they provide a conservative estimate of the toxicity. 

As noted in Section 2, the specific mode of action of simazine on plant photosynthesis indicates that 

phototrophs might be more sensitive than heterotrophs. To assess this possibility, a modality 

assessment of the simazine toxicity data (to marine and freshwater species) was undertaken 

according to the weight of evidence approach described by Warne et al. (2018). Most lines of 

evidence supported the conclusion that the dataset was unimodal, with no clear difference between 

the sensitivity of phototrophs and heterotrophs (Appendix B). Therefore, as recommended by Warne 

et al. (2018), toxicity data for all available organisms were used to calculate the DGVs. 

The acceptable dataset comprised marine chronic, chronic estimated and converted acute negligible 

effect data (e.g. NOEL/NOEC, NEC, EC10) for 14 species. A dataset of exclusively chronic negligible 

effect data or a combination of chronic negligible effect and measurable effect data (e.g. LOEC and 

EC50/LC50) was not used because the distribution of these datasets was poor (Appendix C). The 

acceptable dataset met the minimum data requirements (i.e. at least five species belonging to at 

least four phyla) to use a species sensitivity distribution to derive DGVs (Warne et al. 2018).  

A summary of the toxicity data (one value per species) used to calculate the DGVs for simazine in 

marine water is in Table 2, with additional details of the data provided in Appendix A. Details of the 

data quality assessment and the data that passed the quality assessment are provided as supporting 

information. 

Table 2 Summary of single toxicity values, all species used to derive the default guideline values for 
simazine in marine water 

Taxonomic 
group (phylum) 

Species Life stage 
Duration 
(days) 

Test 
type 

Toxicity 
measure a 
(endpoint) 

Reported 
toxicity 
value 
(µg/L) 

Final 
toxicity 
value 
(µg/L) 

Diatom 
(Bacillariophyta) 

Ceratoneis 
closterium d 

Exponential 
growth 
phase 

3 Chronic IC10  

(Growth rate) 

310 310 

Green 
microalga 
(Chlorophyta) 

Chlorococcum 
sp. 

– 10 Chronic EC50 

(Cell density) 

2 000 400 b 

Bivalve 
(Mollusca) 

Crassostrea 
virginica 

Spat 7 Chronic NOEL  

(Mortality, 
abnormal 
development) 

1 000 1 000 

Commented [A1]: Add hyperlink to data quality assessment 
spreadsheet once url known. 

Commented [A2]: Add hyperlink to data entry spreadsheet 
once url known. 
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Taxonomic 
group (phylum) 

Species Life stage 
Duration 
(days) 

Test 
type 

Toxicity 
measure a 
(endpoint) 

Reported 
toxicity 
value 
(µg/L) 

Final 
toxicity 
value 
(µg/L) 

Dinoflagellate 
(Dinoflagellata) 

Cladocopium 
goreaui 

Exponential 
growth 
phase 

14 Chronic EC10 

(Growth rate) 

257 257 

Green 
microalga 
(Chlorophyta) 

Dunaliella 
tertiolecta 

– 10 Chronic EC50 

(Cell density) 

5 000 1 000 b 

Golden-brown 
microalga 
(Haptophyta) 

Isochrysis 
galbana 

– 10 Chronic EC50 

(Cell density) 

500 100 b 

Crustacean 
(Arthropoda) 

Neopanope 
texana 

– 4 Acute LC50 

(Mortality) 

1 000 000 100 000 c 

Crustacean 
(Arthropoda) 

Palaemonetes 
kadiakensis 

– 2 Acute LC50 

(Mortality) 

100 000 10 000 c 

Crustacean 
(Arthropoda) 

Penaeus 
duorarum 

– 4 Acute LC50 

(Mortality) 

113 000 11 300 c 

Diatom 
(Bacillariophyta) 

Phaeodactylum 
tricornutum d 

Exponential 
growth 
phase  

3 Chronic IC10 

(Growth rate) 

100 100 

Cryptomonad 
(Cryptophyta) 

Rhodomonas 
salina 

Exponential 
growth 
phase 

3 Chronic EC10 

(Growth rate) 

38.4 38.4 

Diatom 
(Bacillariophyta) 

Skeletonema 
costatum d 

– 5 Chronic NOEL 

(Cell density) 

250 250 

Green 
microalga 
(Chlorophyta) 

Tetraselmis sp. Exponential 
growth 
phase 

3 Chronic NEC/EC10 

(Growth rate) 

37.5 37.5 

Golden-brown 
microalga 
(Haptophyta) 

Tisochrysis lutea Exponential 
growth 
phase 

3 Chronic EC10 

(Growth rate) 

60.2 60.2 

a The measure of toxicity that is being estimated/determined. NOEL: no observed effect level; NEC: no effect 

concentration; EC10: 10% effect concentration; IC10: inhibition concentration. 

b Chronic EC50 values converted to chronic EC10/NOEC values by dividing by 5 (Warne et al. 2018). 

c Acute LC50 values that were converted to chronic EC10/NOEL values by dividing by 10 (Warne et al. 2018). 

d Species that originated from or are distributed in Australia and/or New Zealand. 

To identify species that were regionally relevant to Australia and New Zealand ecosystems, the 

following databases were searched: AlgaeBase (Guiry and Guiry 2017); Atlas of Living Australia (ALA 

2017); Catalogue of Life (Roskov et al. 2017); Integrated Taxonomic Information System (ITIS 2017); 

and World Register of Marine Species (WoRMS 2017). The dataset used in the DGV derivation for 

simazine in marine water (Table 2) includes toxicity data for three marine species that either 

originated from or are distributed within Australia and/or New Zealand. There were some additional 

studies that contained simazine toxicity data for Australasian marine species; however, they 

measured photosynthetic inhibition, which is not accepted as an ecologically relevant endpoint 

(Warne et al. 2018), and they were not included in the DGV derivation. 
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4.2 Species sensitivity distribution 

The cumulative frequency (species sensitivity) distribution (SSD) of the 14 toxicity values that were 

used to derive the DGVs is presented in Figure 2. The SSD was plotted using the Burrlioz 2.0 software. 

The model provided a good fit to the data (Figure 2). 

 

Figure 2 Species sensitivity distribution, simazine in marine water 

4.3 Default guideline values 

It is important that the DGVs (Table 3) and associated information in this technical brief are used in 

accordance with the detailed guidance provided in the Australian and New Zealand Guidelines for 

Fresh and Marine Water Quality website (ANZG 2018).  

The DGVs for simazine apply to the concentration of the active ingredient. Although some of the 

toxicity data used to derive the DGVs may have incorporated toxicity due to simazine metabolites, 

this has not been quantified; therefore, the DGVs relate to simazine only—not its metabolites. 

Measured log BCF values for simazine are low (Table 1) and below the threshold at which secondary 

poisoning must be considered (i.e. log BCF = 4 (Warne et al. 2018)). Therefore, the DGVs for simazine 

do not account for secondary poisoning. 

The DGVs for simazine in marine water are provided in Table 3. The 95% species protection DGV of 

30 µg/L is recommended for application to slightly-to-moderately disturbed ecosystems. 
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Table 3 Default guideline values, simazine in marine water, moderate reliability 

Level of species protection (%) DGV for simazine in marine water (µg/L) a 

99 15 

95 30 

90 47 

80 84 

a Default guideline values were derived using Burrlioz 2.0 software and rounded to two significant figures. 

4.4 Reliability classification  

The simazine marine DGVs have a moderate reliability classification (Warne et al. 2018) based on the 

outcomes for the following three criteria: 

• sample size—14 (good) 

• type of toxicity data—chronic and converted acute  

• SSD model fit—good (Inverse Weibull). 
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Glossary 
Term Definition 

acute toxicity A lethal or adverse sub-lethal effect that occurs as the result of a short exposure 
period to a chemical relative to the organism’s life span. 

BCF Bioconcentration factor. 

bimodal When the distribution of the sensitivity of species to a toxicant has two modes. This 
typically occurs with chemicals with specific modes of action. For example, 
herbicides are designed to affect plants at low concentrations but most animals are 
only affected at high concentrations.  

CAS no. Chemical Abstracts Service number. Each chemical has a unique identifying number 
that is allocated to it by the American Chemical Society. 

chronic toxicity A lethal or sublethal adverse effect that occurs after exposure to a chemical for a 
period of time that is a substantial portion of the organism’s life span or an adverse 
effect on a sensitive early life stage. 

default guideline value (DGV) A guideline value recommended for generic application in the absence of a more 
specific guideline value (e.g. site-specific) in the Australian and New Zealand 
Guidelines for Fresh and Marine Water Quality. 

EC50 (median effective 
concentration) 

The concentration of a substance in water or sediment that is estimated to produce 
a 50% change in the response being measured or a certain effect in 50% of the test 
organisms relative to the control response, under specified conditions. 

ECx The concentration of a substance in water or sediment that is estimated to produce 
an x% change in the response being measured or a certain effect in x% of the test 
organisms, under specified conditions. 

endpoint The specific response of an organism that is measured in a toxicity test (e.g. 
mortality, growth, a particular biomarker). 

guideline value (GV) A measurable quantity (e.g. concentration) or condition of an indicator for a 
specific community value below which (or above which, in the case of stressors 
such as pH, dissolved oxygen and many biodiversity responses) there is considered 
to be a low risk of unacceptable effects occurring to that community value. 
Guideline values for more than one indicator should be used simultaneously in a 
multiple lines of evidence approach. 

heterotroph An organism that cannot manufacture its own energy and needs to obtain energy 
from external sources (i.e. by consuming other organisms). 

ICx The concentration of a substance in water or sediment that is estimated to produce 
an x% inhibition of the response being measured in test organisms relative to the 
control response, under specified conditions. 

LC50 (median lethal 
concentration) 

The concentration of a substance in water or sediment that is estimated to be 
lethal to 50% of a group of test organisms, relative to the control response, under 
specified conditions. 

LOEC (lowest observed effect 
concentration) 

The lowest concentration of a material used in a toxicity test that has a statistically 
significant adverse effect on the exposed population of test organisms as compared 
with the controls. 

LOEL (lowest observed effect 
level) 

Synonymous with LOEC. 

mode of action The means by which a chemical exerts its toxic effects. For example, triazine 
herbicides inhibit the photosystem II component of plants’ photosynthesis 
biochemical reaction.  

NEC (no effect concentration) The highest concentration that does not have an effect—this is determined 
differently to a NOEC. 
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Term Definition 

NOEC (no observed effect 
concentration) 

The highest concentration of a material used in a toxicity test that has no 
statistically significant adverse effect on the exposed population of test organisms 
as compared with the controls. 

NOEL (no observed effect level) Synonymous with NOEC. 

phototroph An organism that photosynthesises as its main means of obtaining energy (e.g. 
plants and algae). 

PSII Photosystem II of the photosynthetic biochemical pathway. 

species (biological) A group of organisms that resemble each other to a greater degree than members 
of other groups and that form a reproductively isolated group that will not produce 
viable offspring if bred with members of another group. 

SSD (species sensitivity 
distribution) 

A method that plots the cumulative frequency of species’ sensitivities to a toxicant 
and fits a statistical distribution to the data. From the distribution, the 
concentration that should theoretically protect a selected percentage of species 
can be determined. 

toxicity The inherent potential or capacity of a material to cause adverse effects in a living 
organism. 

toxicity test The means by which the toxicity of a chemical or other test material is determined. 
A toxicity test is used to measure the degree of response produced by exposure to 
a specific level of stimulus (or concentration of chemical) for a specified test period  

unimodal  Having one mode of distribution (of the sensitivity of species to a toxicant).  
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Appendix A: Toxicity data that passed the screening and 
quality assessment and were used to derive the default 
guideline values 
Table A 1 Summary, toxicity data that passed the screening and quality assurance processes, simazine in marine water 

Taxonomic group Species Life stage 
Exposure 
duration 
(day) 

Test 
type 

Toxicity measure 
(test endpoint) 

Test medium 
Temp. 
(°C) 

pH 
Concentration 
(µg/L) 

Reference 

Crustacean 
(Arthropoda) 

Neopanope 
texana 

– 4 Acute LC50 (Mortality) 
Natural filtered or 
artificial seawater 

23 ± 1 – 1 000 000 USEPA (2015) 

– 100 000 b Value used in SSD 

Crustacean 
(Arthropoda) 

Palaemonetes 
kadiakensis 

– 2 Acute LC50 (Mortality) 
Natural filtered or 
artificial seawater 

23 ± 1 – 100 000 USEPA (2015) 

– 10 000 b Value used in SSD 

Crustacean 
(Arthropoda) 

Penaeus 
duorarum 

– 4 Acute LC50 (Mortality) 
Natural filtered or 
artificial seawater 

23 ± 1 – 113 000 USEPA (2015) 

– 11 300 b Value used in SSD 

Diatom 
(Bacillariophyta) 

Ceratoneis 
closterium 

Exponential 
growth phase 

3 Chronic IC10 (Growth rate) 
Filtered (0.45 μm) 
seawater 

21 ± 2 8.2 ± 0.1 310 Hook et al. (2014) 

– 310 Value used in SSD 

Diatom 
(Bacillariophyta) 

Phaeodactylum 
tricornutum 

Exponential 
growth phase 

3 Chronic IC10 (Growth rate) 
Filtered (0.45 μm) 
seawater 

21 ± 2 8.2 ± 0.1 100 
Osborn and Hook 
(2013) 

– 100 Value used in SSD 

Diatom 
(Bacillariophyta) 

Skeletonema 
costatum 

– 5 Chronic NOEL (Cell density) Algal nutrient medium 20–24 ± 2 – 250 USEPA (2015) 

– 250 Value used in SSD 



Toxicant default guideline values for aquatic ecosystem protection: Simazine in marine water 

Australian and New Zealand Guidelines for Fresh and Marine Water Quality 12 

OFFICIAL 

OFFICIAL 

Taxonomic group Species Life stage 
Exposure 
duration 
(day) 

Test 
type 

Toxicity measure 
(test endpoint) 

Test medium 
Temp. 
(°C) 

pH 
Concentration 
(µg/L) 

Reference 

Green microalga 
(Chlorophyta) 

Chlorococcum 
sp. 

– 10 Chronic EC50 (Cell density) 
Synthetic salt water or 
filtered natural salt 
water 

30 ± 5 8.0 ± 0.1 2 000 USEPA (2015) 

– 400 a Value used in SSD 

Green microalga 
(Chlorophyta) 

Dunaliella 
tertiolecta 

– 10 Chronic EC50 (Cell density) 
Synthetic salt water or 
filtered natural salt 
water 

30 ± 5 8.0 ± 0.1 5 000 USEPA (2015) 

– 1 000 a Value used in SSD 

Green microalga 
(Chlorophyta) 

Tetraselmis sp. 

Exponential 
growth phase 

3 Chronic NEC (Growth rate) 
EDTA-free Guillard’s f/2 
medium 

27–29 8.1–8.2 37.5 Negri et al. (2020) 

Exponential 
growth phase 

3 Chronic EC10 (Growth rate) 
EDTA-free Guillard’s f/2 
medium 

27–29 8.1–8.2 37.5 Negri et al. (2020) 

– 37.5 Value used in SSD 

Cryptomonad 
(Cryptophyta) 

Rhodomonas 
salina 

Exponential 
growth phase 

3 Chronic EC10 (Growth rate) Guillard’s f/2 medium 26.0 ± 0.6 8.5 ± 0.4 38.4 Negri et al. (2020) 

– 38.4 Value used in SSD 

Dinoflagellate 
(Dinoflagellata) 

Cladocopium 
goreaui 

Exponential 
growth phase 

14 Chronic EC10 (Growth rate) IMK nutrient media 27 ± 0.6 7.8 ± 0.5 257 Negri et al. (2020) 

– 257 Value used in SSD 

Golden-brown 
microalga 
(Haptophyta) 

Tisochrysis lutea 
Exponential 
growth phase 

3 Chronic EC10 (Growth rate) 
EDTA-free Guillard’s f/2 
medium 

27–29 7.9–8.3 60.2 Negri et al. (2020) 

– 60.2 Value used in SSD 

Golden-brown 
microalga 
(Haptophyta) 

Isochrysis 
galbana 

– 10 Chronic EC50 (Cell density) 
Synthetic salt water or 
filtered natural salt 
water 

30 ± 5 8.0 ± 0.1 500 USEPA (2015) 

– 100 a Value used in SSD 
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Taxonomic group Species Life stage 
Exposure 
duration 
(day) 

Test 
type 

Toxicity measure 
(test endpoint) 

Test medium 
Temp. 
(°C) 

pH 
Concentration 
(µg/L) 

Reference 

Bivalve (Mollusca) 
Crassostrea 
virginica 

Spat 7 Chronic 
NOEL (Mortality, 
abnormal 
development) 

Good quality unfiltered 
seawater: natural or 
artificial (with food 
added) 

20 ± 5 – 1 000 USEPA (2015) 

– 1 000 Value used in SSD 

a Values were chronic EC50 values that were converted to chronic EC10/NOEC values by dividing by 5 (Warne et al. 2018). 

b Values were acute LC50 values that were converted to chronic EC10/NOEL values by dividing by 10 (Warne et al. 2018). 
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Appendix B: Modality assessment for 
simazine toxicity to aquatic species 
A modality assessment was undertaken for simazine according to the weight of evidence approach 

specified in Warne et al. (2018). 

Is there a specific mode of action that could result in taxa-specific sensitivity? 
Section 2.1 describes the known mechanisms of toxicity of simazine. Briefly, simazine is a PSII-

inhibiting herbicide that is expected to be more sensitive to phototrophs than to heterotrophs. 

However, in addition to its main mode of action, exposure to simazine and other PSII-inhibiting 

herbicides increases the formation of ROS in both phototrophs and heterotrophs. Moreover, 

simazine can also exert biochemical effects, including endocrine disruption.  

Given the main mode of action of simazine is the inhibition of electron transport in the PSII complex, 

simazine is expected to be more toxic to phototrophs than to heterotrophs. 

Does the dataset suggest bimodality? 
Modality was assessed using a dataset that combined all freshwater and marine toxicity data that 

passed the screening and quality assessment (n = 42). This was done to increase the sample size of 

the dataset being assessed.  

All acute data (e.g. LC50) or chronic effect data (e.g. EC50) were converted to chronic negligible 

effect data (e.g. NEC, EC10, NOEL) using the methods recommended by Warne et al. (2018). Box and 

whisker plots for the freshwater data and marine data suggested considerable overlap, with an 

indication that marine species may be slightly less sensitive (Figure B 1).  

 

Note: the line in the box represents the median; ‘x’ represents the mean; unfilled circles represent suspected outliers; filled 

circles represent known outliers; error bars represent minimum and maximum values. 

Figure B 1 Box plot, comparison of freshwater and marine species sensitivities to simazine 
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Calculation of the bimodality coefficient (BC) yielded a value of 0.424. This is below the indicative 

threshold BC for bimodality of 0.555, suggesting the dataset does not exhibit bimodality (Figure B 2). 

 
Figure B 2 Histogram of freshwater and marine species dataset 

Do data show taxa-specific sensitivity (i.e. through distinct groupings of different taxa types)? 
The relative sensitivity of freshwater and marine phototrophs and heterotrophs to simazine was 

compared using box and whisker plots (Figure B 3) and a species sensitivity distribution (SSD) 

(Figure B 4). These indicated that there is not a complete separation in the sensitivity of phototrophs 

and heterotrophs to simazine; that is, there is no clear indication of bimodality.  

 

Note: the line in the box represents the median; ‘x’ represents the mean; unfilled circles represent suspected outliers; filled 

circles represent known outliers; error bars represent minimum and maximum values. 

Figure B 3 Box plot, comparison of phototroph and heterotroph sensitivity to simazine 
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Figure B 4 Species sensitivity distribution, comparison of phototroph and heterotroph sensitivity to 
simazine 

Is it likely that indications of bimodality or multimodality or distinct clustering of taxa groups are 
not due to artefacts of data selection, small sample size, test procedures, or other reasons 
unrelated to a specific mode of action? 
Given that there are data for 27 phototrophs and 17 heterotrophs, it is likely that the distributions 

are representative, although a bias associated with other factors (e.g. data selection, test 

procedures, or other reasons unrelated to a specific mode of action) cannot be ruled out. 

While the specific mode of action of simazine and the frequency histogram in Figure B 2 suggest that 

simazine toxicity might not be unimodal, this was not well supported by the other lines of evidence. 

Although simazine might exhibit some taxa-specific sensitivity (i.e. phototrophs being more sensitive 

that heterotrophs), it does not indicate a distinctly bimodal toxicity relationship.  

Overall, the evidence suggests the toxicity of simazine is likely to be unimodal, which is similar to 

what has been observed for atrazine (a similar herbicide). Therefore, toxicity data for all species were 

used to derive DGVs for simazine as per Warne et al. (2018).  
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Appendix C: Explanation of the dataset 
used to derive the DGVs 
Three datasets were assessed for their suitability to derive DGVs for simazine in marine water. 

The first dataset consisted of chronic negligible effect data (i.e. NEC, EC10, IC10, NOEL) for eight 

marine species that belonged to six phyla, which met the minimum data requirements to derive 

DGVs using the SSD method. The resulting SSD (Figure C 1) had a poor fit to the data, and protective 

concentrations (Table C 1) were of moderate reliability. 

 
Figure C 1 Species sensitivity distribution, first dataset, simazine in marine water  

Table C 1 Protective concentrations, first dataset, simazine in marine water, moderate reliability  

Level of species protection (%) Protective concentrations for simazine in marine water (µg/L) a 

99 21 

95 31 

90 40 

80 55 

a Protective concentrations were derived using Burrlioz 2.0 software and rounded to two significant figures.  

The close proximity of the 95% species protection value (31 µg/L) to the two lowest toxicity values 

(i.e. 37.5 µg/L and 38.4 µg/L, Figure C 1), which represent 25% of the data in the SSD, suggests that 

the value may not provide adequate protection (i.e. it should protect as few as 75% of species). 

Under such circumstances, Warne et al. (2018) recommend that a more conservative value is 
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adopted. Another limitation of this dataset is that the fit of the SSD to the data is poor, with the 

resulting protection concentration values having a moderate reliability if they were used as DGVs.  

Given the above limitations, a second dataset was created by including chronic EC50 data that had 

been converted to chronic negligible effect data based on Warne et al. (2018) to determine if a 

better fitting SSD and, therefore higher reliability DGVs, could be generated. In doing this, toxicity 

data for an additional three species were added. The fit of the SSD to the data remained poor 

(Figure C 2) with the resulting values (Table C 2) having a moderate reliability if they were used as 

DGVs. 

 
Figure C 2 Species sensitivity distribution, second dataset, simazine in marine water 

Table C 2 Protective concentrations, second dataset, simazine in marine water, moderate reliability 

Level of species protection (%) Protective concentrations for simazine in marine water (µg/L) a 

99 23 

95 35 

90 46 

80 65 

a Protective concentrations were derived using Burrlioz 2.0 software and rounded to two significant figures.  

The resulting SSD and protective concentrations had the same limitations as using only chronic 

negligible effect toxicity data; therefore, a third dataset was tested. This involved the use of all 

available toxicity data to marine species (i.e. for chronic, chronic estimated and converted acute 

negligible effect toxicity data). The resulting SSD (Figure 2) and values provided a better fit to the 

data and, as such, these values were recommended for adoption as the DGVs (Table 3).  
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